Neues DFG-Projekt erforscht Graphen – Mit Nobelpreisträgern in einem Boot

Der zweidimensionale Kohlenstoff ist hundertmal leitfähiger als Kupfer, stabil wie ein Diamant und trotzdem ultradünn. Das fasziniert nicht nur die aktuellen Nobelpreisträger; gleich mehrere Projekte an der UDE widmen sich dem Wundermaterial. Jetzt beginnt zudem ein neues DFG-Vorhaben, das seine Herstellung optimieren soll.

Weil Graphen ein so vielversprechender Stoff ist, hat die Deutsche Forschungsgemeinschaft ein Schwerpunktprogramm eingerichtet. Dazu gehört das gerade bewilligte Vorhaben, das in den nächsten drei Jahren mit 225.000 Euro gefördert wird. Es ist an der UDE gut aufgehoben, denn die AG Schleberger hat in den vergangenen dreieinhalb Jahren bereits wichtige Grundlagenforschung betrieben. Das Team modifizierte gezielt Graphen und hat den Alleskönner u.a. mit schnellen Ionen beschossen. „Wir wollten wissen, wie man dieses ultradünne Material bearbeiten kann“, so die Professorin.

Dafür braucht man stabile Graphenlagen – bestehend aus einer einzelnen Atomschicht. Eine gute Methode haben die Nobelpreisträger entwickelt: Man drückt Tesafilm auf einen Grafitkristall und klebt diesen anschließend auf einen Siliziumwafer. Winzige Teile bleiben haften, darunter auch manchmal Graphen. Unter dem Rasterkraftmikroskop sehen diese Flächen aus wie Seidentücher. Sie sind 10.000-mal dünner als ein Haar und lassen sich mit Ionen zerschneiden oder falten.

Ideale Proben gesucht

Für das neue Projekt wollen die UDE-Wissenschaftler noch tiefer in die Nanowelten eintauchen. Sie präparieren eine Lage Kohlenstoff auf kristallinen Substraten wie etwa Strontiumtitanat, um sie zu analysieren. Dies geschieht im Ultrahochvakuum. „Wir möchten herausfinden, wie sich unter kontrollierten Bedingungen die Eigenschaften verändern und verbessern lassen“, erklärt Projektleiterin Schleberger. Denn bei dem bisherigen mechanischen Verfahren regierte das Zufallsprinzip: Keine Probe ist wie die andere. Aber erst mit Idealproben lässt sich beispielsweise messen, wie leitfähig das teuerste Material der Welt wirklich ist.

Wenn es gelingt, perfekte Monolagen herzustellen, kann man das spannende Material gezielt bearbeiten, und es könnte eines Tages Silizium in der Computerchipindustrie ablösen. „Es ist faszinierend, dass Kohle vom Energielieferanten zum absoluten Hightech-Werkstoff wird“, sagt Professorin Schleberger, auch mit einem Blick auf das Revier.

An ihre Tür klopfen derzeit viele interessierte Studierende, die davon gehört haben, dass hochaktuelle Forschung wie die Graphenprojekte an der UDE angesiedelt sind. Auch andere Kollegen experimentieren schon länger mit dem Material, z.B. PD Dr. Frank Meyer zu Heringdorf (Physik), Prof. Dr. Gerd Bacher (Elektrotechnik) und Dr. Gabi Schierning (Nanostrukturtechnik). Wenn sie Vorträge halten, geht es ihnen wie Marika Schleberger: Sie profitieren von der Aufmerksamkeit, die der Nobelpreis bewirkt hat, und referieren in gut gefüllten Hörsälen.

Weitere Informationen: Prof. Dr. rer. nat. Marika Schleberger, Tel. 0203/379-1600/1601, marika.schleberger@uni-due.de

Media Contact

Katrin Braun idw

Weitere Informationen:

http://www.uni-due.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer