Neues astronomisches Phänomen: »Kernschein« gibt Einblicke in früheste Phase der Sterngeburt

Die Molekülwolke CB 244 im Sternbild Cepheus, rund 650 Lichtjahre entfernt. Licht aus dem mittleren Infrarot wird an den größeren Staubteilchen im Wolkeninneren gestreut. Dies ist der in dem Falschfarbenbild dargestellte, neu entdeckte »Kernschein« (»coreshine«). Bild: MPIA <br>

Jetzt hat eine Gruppe von Astronomen im Inneren einer Vielzahl solcher Wolken ein neues astronomisches Phänomen nachweisen können: den Umstand, dass Infrarotlicht an größeren Staubteilchen im Wolkeninneren gestreut wird. Der »Kernschein« liefert Informationen über die frühesten Phasen der Sternentstehung. Die neuen Ergebnisse werden am 24. September 2010 in der Zeitschrift Science veröffentlicht.

Sterne entstehen, wenn besonders dichte Gebiete kosmischer Gas- und Staubwolken (»Molekülwolken«) unter der eigenen Schwerkraft kollabieren und sich dabei soweit verdichten und aufheizen, dass Kernfusionsreaktionen einsetzen. Auch unsere Sonne ist so entstanden, und die Kernfusionsreaktionen sind für das stete Leuchten unseres Heimatsterns verantwortlich, das Voraussetzung für alles Leben auf der Erde ist. Die in der kollabierenden Wolke enthaltenen Staubteilchen sind das Rohmaterial für die Entstehung von erdähnlichen Planeten um die neu entstandenen Sterne.

Was in den Frühstadien eines solchen Kollapses passiert, ist weitgehend ungeklärt. Jetzt hat ein internationales Forscherteam unter der Leitung von Laurent Pagani (LERMA, Observatoire de Paris) und Jürgen Steinacker (Max-Planck-Institut für Astronomie) ein neuartiges Phänomen entdeckt, das eine Vielzahl von Informationen über eben diese früheste Phase der Stern- und Planetenentstehung verspricht: den »Kernschein« (englisch »coreshine«) der Wolken. Dabei handelt es sich um unsere Galaxie durchflutendes Infrarotlicht, das von Staubteilchen im Inneren solcher Wolken gestreut wird. Das gestreute Licht liefert Hinweise auf die Größe und Dichte der Staubteilchen, das Alter der Wolke, die räumliche Verteilung des Gases, die Entstehung des Rohmaterials für die spätere Bildung von Planeten und chemische Prozesse im Inneren der Wolke.

Die Entdeckung beruht auf Beobachtungen mit dem NASA-Weltraumteleskop SPITZER. Im Februar dieses Jahres hatten Steinacker und Pagani mit Kollegen aus Grenoble und Pasadena bei Untersuchungen der Molekülwolke L 183 im Sternbild Serpens Caput (»Kopf der Schlange«), rund 360 Lichtjahre von uns entfernt, unerwartete Mittelinfrarotstrahlung nachgewiesen, die aus den dichtesten Regionen der Wolke zu stammen schien. Im Vergleich mit aufwändigen Simulationen konnten die Astronomen zeigen, dass es sich um die Streustrahlung größerer Staubteilchen (Durchmesser rund 1 Mikrometer) handeln musste. Die neue Science-Veröffentlichung beschreibt jetzt Nachfolgeuntersuchungen an insgesamt 110 solcher Quellen, die mit Spitzer beobachtet worden waren und zwischen 300 und 1300 Lichtjahre von der Erde entfernt sind. Die Untersuchungen belegen, dass es sich um ein weit verbreitetes astronomisches Phänomen handelt: Kernschein ließ sich in rund der Hälfte der untersuchten Wolken nachweisen und ist auch dort mit den dichtesten Wolkenregionen assoziiert.

Die Entdeckung des Kernscheins motiviert eine Vielzahl neuer Beobachtungsprojekte – sowohl für das Weltraumteleskop Spitzer als auch für das James Webb-Weltraumteleskop, das 2014 gestartet werden soll. Bereits jetzt liefert die neue Beobachtungsart neue Einblicke in das Innere der Geburtsstätten von Sternen: Das unerwartete Vorhandensein größerer Staubteilchen (Durchmesser rund 1 Mikrometer) zeigt, dass Staubteilchen bereits in der Vorphase des Wolkenkollapses verklumpen und dadurch größer werden. Interessant ist auch das Beispiel einer Region im südlichen Sternbild »Segel des Schiffs« (Vela), in deren verschiedenen Wolken kein Kernschein nachweisbar war. Steinacker und seine Kollegen vermuten, dass Sternexplosionen (Supernovae), von denen man weiß, dass sie in diesem Gebiet stattgefunden haben, die größeren Staubteilchen zerstört haben könnten.

Kontakt

Dr. habil. Jürgen Steinacker (Ko-Hauptautor)
Max-Planck-Institut für Astronomie
Tel.: (+33) 476 – 43 02 32
E-Mail: stein@mpia.de
Prof. Dr. Thomas Henning (Koautor)
Max-Planck-Institut für Astronomie
Tel.: 06221 – 528 200
E-Mail: henning@mpia.de
Dr. Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Tel.: 06221 – 528 261
E-Mail: poessel@mpia.de

Media Contact

Dr. Markus Pössel Max-Planck-Institut

Weitere Informationen:

http://www.mpia.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer