Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Weg zur Feinstrukturkonstante

10.03.2016

Theoretische Grundlage für zukünftige Präzisionsmessungen gelegt

Physiker wollen immer Alles ganz genau wissen. Auch wenn die vor 100 Jahren von Arnold Sommerfeld eingeführte Feinstrukturkonstante – sie erklärt die Aufspaltung von Spektrallinien – bis auf 10 Nachkommastellen genau bekannt ist, wird doch nach Methoden gesucht, diese noch präziser zu messen.


Die Feinstrukturkonstante α bestimmt die genaue Stärke der Anziehungskraft zwischen Elektronen und Kern, und damit auch die Wechselwirkungsstärke der Elektronen mit einem Magnetfeld.

Grafik: MPIK

Theoretiker des MPI für Kernphysik haben nun einen Weg aufgezeigt, wie über magnetische Messungen an Ionen mit nur wenigen Elektronen dieses Ziel erreichbar wird. Dazu haben sie berechnet, wie der die Messgenauigkeit beeinträchtigende Einfluss des Atomkerns zum Verschwinden gebracht werden kann.

Als gegen Ende des 19. Jahrhunderts die Auflösung der optischen Spektrometer besser geworden war, stellte sich heraus, dass scheinbar einzelne Linien in den Spektren von Atomen in Wirklichkeit aus Gruppen von Linien bestehen.

Zur Erklärung dieser Aufspaltung der Spektrallinien hat Arnold Sommerfeld 1916 die sogenannte Feinstrukturkonstante eingeführt, die sich als eine wichtige Größe in der Spektroskopie erwies. Ursachen der Feinstrukturaufspaltung sind relativistische Effekte und der Spin der Elektronen, die sich wie winzige kreiselnde Stabmagnete verhalten.

Im Prinzip eignen sich alle atomaren Systeme zur Bestimmung der Feinstrukturkonstante, weil diese die genaue Stärke der elektromagnetischen Anziehung zwischen den negativ geladenen Elektronen und dem positiv geladenen Atomkern angibt – das ist die Kraft, die Atome zusammenhält. Alle Eigenschaften eines Atoms sind von dieser Kraft und damit vom Wert der Feinstrukturkonstante abhängig. Atome mit vielen Elektronen sind aber theoretisch schwer zu behandeln, weil die vielen Elektronen sich gegenseitig beeinflussen. Deswegen wählt man Ionen mit wenigen Elektronen, am liebsten mit nur einem einzigen Elektron.

Theoretiker des MPI für Kernphysik um Zoltán Harman, Gruppenleiter in der Abteilung von Christoph Keitel, schlagen zusammen mit Kollegen aus St. Petersburg eine neuartige Methode vor, die Sommerfeldsche Feinstrukturkonstante über magnetische Messungen an Ionen zu bestimmen, die sich in Ionenfallen sehr präzise durchführen lassen.

Resultat ist das magnetische Moment des im Ion gebundenen Elektrons. Das magnetische Moment beschreibt, wie stark der "Stabmagnet" des kreiselnden Elektrons mit einem Magnetfeld wechselwirkt. Diese "Magnetstärke" eignet sich zur Präzisionsbestimmung der Stärke der Anziehungskraft zwischen Elektron und Kern.

Mit den Methoden der Quantenphysik kann man genau berechnen, wie das magnetische Moment von der Feinstrukturkonstante abhängt. Ein großes Hindernis stellt aber der Atomkern dar: er ist ein kompliziertes System aus Protonen und Neutronen, und seine Struktur ist nicht so gut verstanden wie sich die Präzisionsphysiker wünschen.

Das ist am schwierigsten bei den eigentlich idealen schweren Elementen. Deswegen wenden der Erstautor Vladimir Yerokhin und Kollegen einen Trick an: sie betrachten nicht nur ein einziges Ion, sondern zwei Ionen mit demselben Kern, aber mit einem bzw. drei Elektronen. Durch eine ausgeklügelte Kombination der magnetischen Momente der beiden Ionen bringen sie die störende, quantitativ unvollständig bekannte Kernstruktur dazu, aus der Gleichung zu verschwinden. Das funktioniert am besten bei Ionen leichter Elemente, die experimentell auch leichter zu erzeugen sind.

„Mit Präzisionsmessungen an unterschiedlich geladenen Ionen mehrerer leichter Elemente sollte es zukünftig möglich sein, die Genauigkeit der derzeit auf 10 Nachkommastellen genau bekannten Feinstrukturkonstante zu verbessern“, erwartet Zoltán Harman. Solche Messungen könnten zukünftig die Ionenfallenexperten der Abteilung von Klaus Blaum am Institut durchführen.

Eine früher vorgeschlagene Methode mit Messungen von zwei Ionen eines schweren Elements erlaubt dagegen keine wesentliche Steigerung der Genauigkeit. Da die Feinstrukturkonstante eng mit anderen physikalischen Konstanten des Elektromagnetismus verbunden ist, kann eine Präzisionssteigerung auch zur Verfeinerung der SI-Basiseinheiten beitragen.

Originalpublikation:

g-factor of light ions for an improved determination of the fine-structure constant
V. A. Yerokhin, E. Berseneva, Z. Harman, I. I. Tupitsyn, and C. H. Keitel
Physical Review Letters 116, 100801 (2016), doi: 10.1103/PhysRevLett.116.100801

Kontakt:

PD Dr. Zoltán Harman
Tel.: 06221 516170
E-Mail: zoltan.harman(at)mpi-hd.mpg.de

Hon.-Prof. Dr. Christoph H. Keitel
Tel.: 06221 516 150
E-Mail: christoph.keitel(at)mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Dem Rätsel der Materie auf der Spur
28.02.2020 | Paul Scherrer Institut (PSI)

nachricht Mär vom „Quantensprung“ widerlegt
28.02.2020 | Universität Siegen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wiegende Halme auf der Handwerksmesse München

Talente-Sonderschau: Architekturstudenten der HTWK Leipzig zeigen filigrane Skulptur aus Strohhalmen – dahinter steckt eine Konstruktionsidee für organisch gekrümmte Fassaden

Swaying Straws (Wiegende Halme) heißt die Skulptur, die die zwei Architekturstudenten Fabian Eidner und Theodor Reinhardt von der Hochschule für Technik,...

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hate Speech bis KI: Online-Forscher_innen aus aller Welt treffen sich zur General Online Research an der HTW Berlin

28.02.2020 | Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Asteroid in eiserner Rüstung

28.02.2020 | Geowissenschaften

Hate Speech bis KI: Online-Forscher_innen aus aller Welt treffen sich zur General Online Research an der HTW Berlin

28.02.2020 | Veranstaltungsnachrichten

UV-Licht gegen störenden Unterwasserbewuchs – Innovatives Antifouling-System des IOW jetzt reif für Serienproduktion

28.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics