Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Schub für ToCoTronics

23.05.2019

Ein toller Erfolg für die Würzburger Physik: Ihr Sonderforschungsbereich wurde als exzellent bewertet und geht nun in seine zweite Förderphase. Die Deutsche Forschungsgemeinschaft stellt dafür 12 Millionen Euro bereit.

Im Jahr 2015 gelang es Physikerinnen und Physikern der Julius-Maximilians-Universität (JMU), in Würzburg einen neuen Sonderforschungsbereich zu etablieren. Dafür stellte die Deutsche Forschungsgemeinschaft (DFG) rund elf Millionen Euro zur Verfügung.


Die Grafik zeigt das Wechselspiel zwischen Topologie (blauer Ring) und starker Korrelation (Elektronenspins; farbige Pfeile auf dem Quadratgitter). Darum geht es im Würzburger SFB ToCoTronics.

Grafik: Jörg Schäfer / Universität Würzburg

Das Geld floss in die Erforschung topologischer Materialien – diese Materialklasse zeichnet sich durch sehr ungewöhnliche Eigenschaften aus. Sie wird weltweit intensiv untersucht, weil sie neuartige Anwendungen in der Informationstechnologie und anderen Bereichen verspricht.

Nun stand die planmäßige Begutachtung des Sonderforschungsbereichs (SFB) an. Dieser Prozess verlief für die Universität sehr erfolgreich: Die DFG stuft die geleisteten Arbeiten und die neuen Forschungspläne der Physik weiterhin als exzellent ein. Sie fördert den SFB „Topologische und korrelierte Elektronik in Ober- und Grenzflächen (ToCoTronics)“ für weitere vier Jahre mit insgesamt 12 Millionen Euro.

Forschungsergebnisse hochrangig veröffentlicht

Professor Björn Trauzettel, einer der beiden SFB-Sprecher und Inhaber des JMU-Lehrstuhls für Theoretische Physik IV, freut sich sehr über diesen Erfolg: „Im SFB haben wir die Forschung an topologischen Materialien entscheidend vorangetrieben. Wir haben neue topologische Isolatoren entdeckt und Hybridsysteme aus topologischen Materialien und Supraleitern optimiert.“

Die bisherigen Leistungen des gesamten SFB-Forschungsteams zeigen sich unter anderem an der großen Zahl von über 200 Veröffentlichungen in renommierten Fachzeitschriften. Mehr als 50 dieser Publikationen sind in den besonders renommierten Zeitschriften Nature, Science, Nature Physics, Nature Materials, Nature Nanotechnology und Physical Review Letters erschienen.

Blick auf das Forschungsprogramm bis 2023

Mit dem Fördergeld der DFG sollen in den kommenden vier Jahren knapp 40 neue Personalstellen im SFB finanziert werden. Das neue Forschungsprogramm dreht sich um eine zentrale Frage: Wie beeinflussen elektronische Korrelationen die topologische Physik von Festkörpern und umgekehrt?

„Wenn die zugrundeliegenden Mechanismen verstanden sind, können wir Nanosysteme mit funktionalen Eigenschaften designen und sie für innovative Anwendungen in der Spintronik oder in der Quanteninformationstechnik nutzen“, sagt Trauzettel.

Erste Zwischenziele seien die Optimierung der Materialqualität bekannter topologischer Isolatoren, die Erzeugung neuartiger topologischer Grenzflächenphasen durch Kombination mit Supraleitern und Ferromagneten sowie die Funktionalisierung für mögliche Anwendungen.

Professor Ralph Claessen, der andere SFB-Sprecher und Inhaber des JMU-Lehrstuhls für Experimentelle Physik IV, beschreibt einen weiteren zentralen Schwerpunkt: „Er wird auf dem Zusammenspiel von Spin-Bahn-Kopplung mit Coulomb-Wechselwirkung liegen, das noch wenig verstanden ist, aber ein umfangreiches Potential für die Entdeckung neuer topologischer Materialien und Phänomene hat.“

Schub für die Festkörper-Forschung

Die zweite Phase des SFB ToCoTronics läuft zeitgleich mit der ersten Förderperiode des Exzellenzclusters ct.qmat, in dem die Uni Würzburg und die TU Dresden gemeinsam die topologische Physik in verschiedenen Systemen erforschen. ToCoTronics ist eine wichtige Säule des Exzellenzclusters. Es ist zu erwarten, dass die Synergien beider Großprojekte der JMU-Festkörper-Forschung einen Schub verleihen, der die Stellung der Universität als einen der weltweit führenden Forschungsstandorte festigt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Björn Trauzettel, Institut für Theoretische Physik und Astrophysik der JMU, T +49 931 31-83638, trauzettel@physik.uni-wuerzburg.de

Prof. Dr. Ralph Claessen, Physikalisches Institut der JMU, T +49 931 31-85732, claessen@physik.uni-wuerzburg.de

Weitere Informationen:

https://www.physik.uni-wuerzburg.de/sfb1170/startseite/ Sonderforschungsbereich ToCoTronics

https://www.uni-wuerzburg.de/aktuelles/pressemitteilungen/single/news/spitzenfor... Für Laien aufbereitet: Informationen über den Forschungsgegenstand in ToCoTronics finden sich in der Pressemitteilung, die die JMU im Mai 2015 zum Start des SFB verbreitet hat.

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabilität und Mobilität: Zwei Flüssigkeiten sind der Schlüssel
17.06.2019 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Weizensorten bewähren sich auch unter widrigen Anbaubedingungen

17.06.2019 | Agrar- Forstwissenschaften

Inventur in der Synapse

17.06.2019 | Biowissenschaften Chemie

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics