Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Magneteffekt erspürt Nanomagnetwirbel

16.10.2015

Jülicher Forscher haben einen magnetischen Transporteffekt entdeckt, der sich zur Herstellung hochempfindlicher Sensoren eignen könnte. Mit ihm ließen sich Daten auslesen, die in winzigen Magnetwirbeln gespeichert sind. Solche sogenannten "Skyrmionen" werden als mögliche Bits der Zukunft gehandelt, weil sie eine weitere Miniaturisierung von Datenspeichern ermöglichen und sich extrem energiesparend verarbeiten lassen könnten.

Die Energieeffizienz von Informations- und Kommunikationstechnologien zu verbessern, ist angesichts des ansteigenden Energieverbrauchs Ziel weltweiter Forschungsanstrengungen. Die Forschungsarbeit der theoretischen Physiker ist in der aktuellen Ausgabe von "Nature Communications" nachzulesen (DOI: 10.1038/ncomms9541).


Im Konzept der sogenannten "Race-Track Memory"-Speichertechnologie soll ein Skyrmion eine "Null" codieren, ein ferromagnetischer Bereich eine "Eins".Im Konzept der sogenannten "Race-Track Memory"-Speichertechnologie soll ein Skyrmion eine "Null" codieren, ein ferromagnetischer Bereich eine "Eins". Der in Jülich entdeckte TXMR-Effekt könnte das Auslesen der Daten ermöglichen.

Copyright: Forschungszentrum Jülich

"Mit Skyrmionen als Bits könnte sich die Integrationsdichte von Daten, verglichen mit den heute verbreiteten Speicherchips, um den Faktor 500 bei gleicher Geschwindigkeit steigern lassen", hat der Physiker Prof. Samir Lounis mit seinem Team am Forschungszentrum Jülich errechnet.

Die zweidimensionalen magnetischen Wirbel bestehen nur aus wenigen Atomen und kommen an der Oberfläche oder Grenzfläche dünner Metallfilme vor. Ihre magnetischen Momente zirkulieren mit einem festen Drehsinn innerhalb einer Ebene. Mit ihrer Größe von einigen wenigen Nanometern gehören sie zu den kleinsten bekannten stabilen magnetischen Gebilden.

Anders als bei Festplatten, die zum Einschreiben und Auslesen von Daten in Rotation versetzt werden, sollen sich bei den skyrmionbasierten Bauteilen, sogenannten "Race-Track Memory", die Bits, also die Magnetwirbel, durch das Material hindurch zum Ort des Dateneinschreibens und -auslesens bewegen, ähnlich wie elektrischer Strom durch einen Draht fließt. Mechanisch bewegliche Teile werden nicht benötigt, lediglich schwache elektrische Ströme. Das macht die Technologie sehr energieeffizient.

Ideen zum Einschreiben von Daten mithilfe schwacher Strompulse gibt es bereits. Die Jülicher Forscher vom Peter Grünberg Institut und dem Institute for Advanced Simulation machen nun einen Vorschlag, wie das Auslesen der gespeicherten Daten gelingen könnte.

Sie entdeckten bei Computersimulationen, dass sich der elektrische Widerstand im Zentrum eines Skyrmions um bis zu 20 Prozent von dem Widerstand an Stellen ohne Wirbel unterscheidet. Dieser Unterschied lässt sich nutzen, um auszulesen, ob an einer beliebigen Stelle ein Skyrmion existiert, was digital einer „Null“ entspricht, oder nicht, also eine "Eins" vorliegt.

"Von großem Vorteil für mögliche Anwendungen ist, dass dieser quantenmechanische Effekt – wir haben ihn TXMR (von engl. "Tunneling spin-mixing magnetoresistance") getauft – lotrecht zum Fluss der Skyrmionen auftritt und nicht waagerecht, wie bereits bekannte andere Effekte", freut sich Prof. Stefan Blügel, Direktor am Institute for Advanced Simulation und am Peter Grünberg Institut. "Ein Lesekopf, der den TXMR zum Auslesen der Daten nutzt, wäre deshalb technisch wesentlich einfacher umzusetzen, weil er nicht auf der Ebene der Bits sein muss."

Bis der TXMR tatsächlich Einzug in die PCs der Zukunft halten kann, sind aber noch viele Fragen zu klären, zum Beispiel, ob der Effekt stabil genug ist für eine Nutzung in realen Bauteilen, die fabrikationsbedingt stets Schwankungen der Materialeigenschaften unterliegen. Ein solches Bauteil herzustellen und daran zu demonstrieren, dass sich Skyrmionen tatsächlich auch praktisch zur Datenspeicherung eignen, ist das Ziel des Forschungsprojektes "MAGicSky", an dem die Jülicher Forscher beteiligt sind.

Die Forscher hatten den TXMR bei den ersten erfolgreichen rein quantenmechanischen Simulationen einzelner Skyrmionen entdeckt. Zuvor waren Skyrmionen nur mittels klassischer Gleichungen simuliert worden. An einzelnen Wirbeln in magnetischen Schichtsystemen aus Eisen, Palladium und Iridium konnten die Forscher nun erstmals ihre elektronische und magnetische Struktur detaillierter untersuchen.


Originalveröffentlichung:

Perpendicular reading of single confined magnetic skyrmions; Dax M. Crum, Mohammed Bouhassoune, Juba Bouaziz, Benedikt Schweflinghaus, Stefan Blügel & Samir Lounis; Nature Communications, published 16 October 2015, DOI: 10.1038/ncomms9541

Weitere Informationen:
Pressemitteilung vom 20.10.2014 „Neue Magnetmaterialien für die Informationstechnologie:
www.fz-juelich.de/SharedDocs/Meldungen/PGI/PGI-1/DE/2014/2014-10-20-Neue-Magnetmaterialien.html?nn=538298
Pressemitteilung vom 23.1.2014 „Neuer Weg zur Herstellung von Nanomagneten für die Informationstechnologie“:
www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2013/13-01-23nature.html
Pressemitteilung vom 21.7.2011 „Neue magnetische Ordnung entdeckt“:
www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-07-31magnetischeOrdnung.html

Institutsbereich „Quanten-Theorie der Materialien“ (PGI-1/IAS-1):
www.fz-juelich.de/pgi/pgi-1/DE/Home/

Ansprechpartner:

Jun.-Prof. Dr. Samir Lounis
Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel.: 02461 61-4068
E-Mail: s.lounis@fz-juelich.de

Prof. Stefan Blügel
Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel.: 02461 61-4249
E-Mail: s.bluegel@fz-juelich.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics