Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Kühler mit 2 Millionen Volt

06.12.2012
Elektronenkühler für COSY aus Nowosibirsk eingetroffen

Ein neuer Elektronenkühler für den Jülicher Teilchenbeschleuniger COSY ist nach 12-tägigem Transport per Schwerlaster über knapp 6.000 Kilometer aus Nowosibirsk am Forschungszentrum Jülich angekommen.


Anlieferung des neuen Elektronenkühlers beim Jülicher Teilchenbeschleuniger COSY.

Quelle: Forschungszentrum Jülich

Das im Zusammenarbeit mit dem Budker Institute of Nuclear Physics entwickelte 2-Megavolt-Kühlsystem erweitert die Möglichkeiten, mit COSY extrem seltene, hochenergetische Zerfallsprozesse nachzuweisen, die bei der Suche nach exotischen Formen der Materie und Effekten jenseits des physikalischen Standardmodells eine Rolle spielen.

„Ein Elektronenkühler dieser Größenordnung stellt experimentiertechnisches Neuland dar“, hebt Prof. Sebastian M. Schmidt, Mitglied des Vorstandes des Forschungszentrums Jülich, hervor. „Damit lassen sich erstmals Effekte studieren, die bisher im statistischen Rauschen verborgen blieben. Darüber hinaus sind die Erfahrungen in der Nutzung an COSY eine unverzichtbare Vorstufe für die Realisierung der hochenergetischen Elektronenkühlung am zukünftigen Speicherring HESR am GSI in Darmstadt, bei dem Spannungen von bis zu 8 Megavolt beherrscht werden müssen.“

Bei Experimenten mit Teilchenbeschleunigern zählt nicht nur die Leistung, es kommt auch auf die Qualität des erzeugten Strahls an. Der Jülicher Speicher- und Beschleunigungsring COSY (COoler SYnchrotron) mit einem Umfang von 184 Metern zielt – anders als Hochenergiebeschleuniger wie der Large Hadron Collider am CERN – auf Präzisionsstrahlen im mittleren Energiebereich ab. Dieser Übergangsbereich von Kern- und Teilchenphysik ist beispielsweise relevant für die Untersuchung exotischer Teilchen oder Effekte, bei denen sich die Symmetrieeigenschaften der Elementarteilchen bemerkbar machen.

Viele dieser, nach dem Standardmodell der Physik teilweise sogar „verbotenen Zerfälle“, für die sich die Wissenschaftler interessieren, finden extrem selten statt. Nur mithilfe eines scharf definierten Teilchenstrahls lässt sich entscheiden, ob ein Experiment nur Zufallstreffer oder ein statistisch gesichertes Ergebnis liefert. COSY ist einer der wenigen Beschleuniger, bei dem dazu gleich zwei verschiedene Kühlungsverfahren parallel betrieben werden: eine sogenannte stochastische Kühlung und eine Elektronenkühlung, wobei letztere bisher auf den Niedrigenergiebereich begrenzt war.

„Der vorhandene Elektronenkühler erreicht maximal 100 Kilovolt, mit dem neuen Gerät lassen sich dagegen bis zu 2 Megavolt erzeugen. Das erlaubt es, die Strahldichte im gesamten Energiebereich von COSY entscheidend zu erhöhen, sowie die Strahllebensdauer für die internen Experimente, die neuartige, sehr dichte Targets verwenden, zu verbessern“, berichtet Dr. Vsevolod Kamerdzhiev vom Jülicher Institut für Kernphysik (IKP). Die stochastische Kühlung allein wäre nicht in der Lage, die Aufheizung des Strahls aufzuhalten.

Bei der Elektronenkühlung wird ein Elektronenstrahl eingeschleust, dessen Geschwindigkeit mit der mittleren Geschwindigkeit der Teilchen im Beschleuniger übereinstimmt. Auf der geraden Kühlstrecke – im neuen Kühler ist sie etwa 2,7 Meter lang – wechselwirken die Protonen des umlaufenden Strahls mit dem überlagerten Elektronenstrahl, und zwar im Schnitt umso mehr, je stärker sie vom gewünschten Mittelwert abweichen. Ein extrem präzise ausgerichtetes Magnetfeld sorgt dafür, dass die Elektronen unterwegs “kalt“ bleiben, sich also weiter gleichförmig fortbewegen. Die Abweichungen des Magnetfelds sind dabei so gering, dass sie sich nur mit eigens dazu entwickelten, lasergestützten Messverfahren feststellen lassen. Am Ende der Kühlsektion werden die Elektronen abgekoppelt und wieder aufgefangen.

Jülicher Wissenschaftler arbeiten bei der noch auf den ehemaligen Jülicher Beschleunigerexperten Prof. Jürgen Dietrich zurückgehenden Konstruktion des neuartigen Kühlers mit Partnern vom Budker Institute of Nuclear Physics in Nowosibirsk zusammen. Dort wurde dieses Kühlprinzip, das Gersch Izkowitsch Budker in den 1960er Jahren erstmals vorgeschlagen hatte, in den1970er Jahren erstmals erfolgreich demonstriert. Nach der Nutzung an COSY soll die neue 2-Megavolt-Kühlung am Hochenergie-Speicherring HESR installiert werden, einem Teil des geplanten Beschleunigerkomplexes FAIR (Facility for Antiproton and Ion Research) an der GSI in Darmstadt, der vom Forschungszentrum Jülich federführend aufgebaut wird.

Bildmaterial unter
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-12-06Elektronenkuehler.html

Weitere Informationen:
Forschung am Jülicher Institut für Kernphysik: http://www.fz-juelich.de/ikp
Budker Institute of Nuclear Physics: http://www.inp.nsk.su/index.en.shtml

Ansprechpartner:
Dr. Vsevolod Kamerdzhiev, Institut für Kernphysik (IKP)
Tel. 02461 61-4739
v.kamerdzhiev@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/ikp

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics