Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

22.05.2017

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten Ionisations- und Dissoziationsmechanismen einen neuen Reaktionsweg beobachtet und identifiziert. Dabei übertragen schwingende Atomkerne ihre Bewegungsenergie auf das Elektron und setzen dieses frei.
[Physical Review Letters, 5. Mai 2017]


Abb. 1: Reaktionspfade zur Ionisation und Dissoziation von molekularem Wasserstoff in einem intensiven Femtosekunden-Laserpuls.

Grafik: MPI für Kernphysik


Abb. 2: (a) Elektronenspektrum für gebundene (blau) und dissoziative (rot) Ionisation von H2. (b) Links-Rechts-Asymmetrie der Elektronen. Grün schattiert: Beitrag der Autoionisation.

Grafik: MPI für Kernphysik

Ultrakurze Laserpulse spielen eine Schlüsselrolle für die Kontrolle molekularer Reaktionen, da sie direkt auf die Dynamik der für die chemische Bindung verantwortlichen Elektronen Einfluss nehmen. Die wesentlich schwereren Kerne bewegen sich deutlich langsamer und werden damit nur indirekt beeinflusst. In vielen Fällen ist daher auch die Näherung zulässig, dass sich die räumliche Verteilung der Elektronenhülle an die sich langsam ändernde molekulare Struktur anpasst.

Physiker der Gruppe um Robert Moshammer in der Abteilung von Thomas Pfeifer am Heidelberger MPI für Kernphysik haben nun einen unerwarteten Reaktionsweg identifizieren können, bei welchem obige Näherung nicht mehr gültig ist. Betrachtet wurde die einfache Ionisation des Wasserstoffmoleküls H2 in einem starken Laserfeld, wobei eines der beiden Elektronen das Molekül verlässt.

Das verbleibende Molekülion H2+ kann entweder stabil bleiben oder aber in ein Proton (H+) und ein neutrales Wasserstoffatom (H) zerbrechen („dissoziieren“). Die dissoziative Ionisation stellen sich die Wissenschaftler als zweistufigen Prozess vor: Zuerst werden mehrere Photonen aus dem Laserfeld absorbiert, um ein Elektron freizusetzen.

Das H2+-Molekülion kann dann durch Absorption eines weiteren Photons in einen nicht mehr gebundenen Zustand angeregt werden und bricht auseinander (Abb. 1 links). Hierbei „weiß“ das freie Elektron nichts von dem nachfolgenden Prozess und daher sollte es sich in beiden Fällen gleich verhalten.

Überraschenderweise ist dies aber nicht der Fall: Abb. 2a zeigt das Spektrum des Elektrons, also wie häufig es mit einer bestimmten Geschwindigkeit – ausgedrückt durch die kinetische Energie – das Molekül verlässt. Im Vergleich finden sich deutlich mehr langsame Elektronen für den Fall, dass das Molekülion gebunden bleibt (blaue Kurve) als wenn es dissoziiert (rote Kurve), während sich für schnelle Elektronen kein Unterschied zeigt. Dies deutet auf einen weiteren Ionisationsmechanismus hin, der langsame Elektronen produziert ohne dass die chemische Bindung aufbricht.

Nun ist bekannt, dass sich die Kerne nach der Ionisation nicht mehr im Gleichgewicht befinden und dadurch in Schwingungen gegeneinander versetzt werden – so wie ein Pendel, das plötzlich zur Seite bewegt wird. Dies geschieht auch, wenn das Elektron vom Laserfeld nicht gleich freigesetzt wird, sondern nur einen hochangeregten Zustand erreicht, in welchem es in großem Abstand die Kerne umkreist (Abb. 1 rechts).

Jetzt kann Bewegungsenergie der schwingenden Kerne auf das schwach gebundene Elektron übertragen werden und dieses regelrecht „abschütteln“. Dieser Autoionisation genannte Prozess braucht aber Zeit – länger als die Dauer (ca. 25 Femtosekunden = 2,5x10–14 s) eines ultrakurzen Laserpulses.

Diese Eigenschaft haben die Physiker nun für folgenden Trick genutzt, um das Modell zu testen: Sie überlagerten den Laserpuls mit einem weiteren der doppelten Frequenz und erreichen damit, dass das elektrische Feld je nach Einstellung vorzugsweise in die eine oder entgegengesetzte Richtung (links bzw. rechts) weist. Dies wiederum bewirkt eine asymmetrische räumliche Verteilung der freigesetzten Elektronen – ihnen wird bevorzugt die eine bzw. entgegengesetzte Flugrichtung aufgeprägt. Verlässt aber ein Elektron erst nach Abklingen des Laserpulses das Molekül durch Autoionisation, erfährt es diese Asymmetrie nicht.

Das Ergebnis in Abb. 2b zeigt, dass die Asymmetrie im Bereich langsamer Elektronen für dissoziative Ionisation deutlich größer ist, als wenn das Molekül gebunden bleibt. Ein bestimmter Anteil (laut Abb. 2a bis zu 1/4) der Elektronen kann hier also erst zeitlich nach dem Laserpuls freigesetzt worden sein und stammt folglich aus der Autoionisation.

Originalveröffentlichung:

Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H2 Molecules
Yonghao Mi, Nicolas Camus, Lutz Fechner, Martin Laux, Robert Moshammer and Thomas Pfeifer
Phys. Rev. Lett. 188, 183201 (2017); DOI: 10.1103/PhysRevLett.118.183201

Kontakt:

Dr. Robert Moshammer
MPI für Kernphysik
Tel.: +49 6221-516-461
E-Mail: robert.moshammer(at)mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
Tel.: +49 6221-516-380
E-Mail: thomas.pfeifer(at)mpi-hd.mpg.de

Weitere Informationen:

https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home Abteilung „Quantum Dynamics and Control“ am MPIK
https://www.mpi-hd.mpg.de/mpi/aktuelles/meldung/detail/neuer-ionisationsweg-in-m... Presseinformation des MPIK
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.183201 Orginialveröffentlichung

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klassisches Doppelspalt-Experiment in neuem Licht
21.01.2019 | Universität zu Köln

nachricht Neue Erkenntnisse über magnetische Quanteneffekte in Festkörpern
21.01.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Material soll Grenzen der Silicium-Elektronik überwinden

21.01.2019 | Energie und Elektrotechnik

water meets....Future - Abwasser nachhaltig nutzen

21.01.2019 | Ökologie Umwelt- Naturschutz

Inbetriebnahme eines 3D-Bewegungssimulators am "kunststoffcampus bayern“ in Weißenburg

21.01.2019 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics