Neue Technik macht Durchleuchten einfacher

Schema der neuartigen THz-Quelle: Der nichtlineare Kristall befindet sich innerhalb der Laserkavität, die durch zwei Spiegel und einen VECSEL-Chip gebildet wird. Über einen Frequenz-Mischungsprozess werden aus den zwei Laserfarben THz-Wellen (grün) erzeugt und abgestrahlt. (Grafik: AG Koch)<br>

Terahertz (THz)-Wellen stehen in jüngster Zeit häufig im öffentlichen Interesse, etwa im Kontext von Körperscannern und dem Aufspüren von Sprengstoffen. THz-Strahlen durchdringen Kunststoffe, Verbundmaterialien und viele Lebensmittel, so dass sie Strukturen aufdecken können, die für sichtbares Licht verborgen bleiben; daher eignen sie sich auch hervorragend zur Überwachung industrieller Prozesse und zur Qualitätskontrolle.

Der praktischen Anwendbarkeit stehen jedoch technische Probleme entgegen: So war es bisher nicht möglich, mit kompakten Geräten bei Raumtemperatur hohe Leistungen besonders im Frequenzbereich von ein bis fünf THz zu erzeugen. „Leistungsstarke THz-Quellen müssen auf Temperaturen von wenigen Kelvin abgekühlt werden“, erläutert Professor Dr. Stephan Koch von der Philipps-Universität, der die Idee für das jetzt mitgeteilte Experiment hatte.

Zusammen mit seinen Marburger Kollegen Professor Dr. Martin Koch und Maik Scheller sowie mit der Arbeitsgruppe des Humboldt-Preisträgers Professor Jerome V. Moloney von der University of Arizona ist nun ein technischer Durchbruch gelungen. Die Forscher nutzen sogenannte Halbleiter-Scheibenlaser (englisch „vertical external cavity surface emitting laser“, kurz VECSEL), um zwei scharfe Laserlinien zu erzeugen. Innerhalb der Laserkavität, in der Intensitäten vorherrschen wie sonst nur innerhalb eines Laserstrahles mit Kilowatt-Durchschnittsleitung, platzierten sie einen nichtlinearen Kristall, der über einen Differenz-Frequenz-Erzeugungsprozess THz-Wellen emittiert. „Die hohen Lichtintensitäten ermöglichen hierbei THz-Leistungen im Bereich mehrerer Milliwatt“, berichtet Ko-Autor Martin Koch – „bisher unerreichbare Werte für Terahertz-Emitter, die bei Raumtemperatur arbeiten!“ Durch die freie Wahl des Abstandes der beiden Laserlinien ist eine beliebige Abstimmbarkeit der THz-Frequenz möglich.

„Unsere THz-Quelle basiert auf einem ähnlichen Prinzip wie ein grüner Laserpointer“, erklärt der wissenschaftliche Mitarbeiter Maik Scheller, der die Forschungsarbeiten maßgeblich durchführte: „Indem die Frequenzmischung innerhalb der Laserkavität vonstatten geht, resultiert eine enorme Effizienz.“ Somit können auf einfache Weise THz-Wellen mit hohen Leistungen generiert werden. „Unser Ansatz arbeitet bei Raumtemperatur und bedarf keiner aufwändigen Kühlungstechnik“, ergänzt Stephan Koch.

In dem Fachartikel wird gezeigt, dass die neuartige Quelle nicht nur hohe Leistungswerte aufweist, sondern auch ein ausgezeichnetes räumliches Abstrahlungsprofil. Somit eignet sich diese ideal für Anwendungen, bei denen hohe Leistungen in THz-Wellenleiter eingekoppelt werden müssen. Aber auch das Feld der Radioastronomie könne von diesem Ansatz profitieren, meinen die Autoren.

Originalveröffentlichung: Maik Scheller & al.: „Room temperature continuous wave milliwatt terahertz source“, Optics Express 18, 27112-27117 (2010)

Weitere Informationen:
Ansprechpartner: Professor Dr. Martin Koch,
Fachbereich Physik
Tel.: 06421 28-22270
E-Mail: martin.koch@physik.uni-marburg.de

Media Contact

Johannes Scholten idw

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer