Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode verpasst Mikroskop einen Auflösungsschub

10.12.2018

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen ineinander – sie lassen sich nicht mehr voneinander unterscheiden.


Schematische Darstellung eines mit roten Fluoreszenzfarbstoffen markierten Kernporenkomplexes, der von der Kernmembran umhüllt und auf einer Verspiegelung aufgebracht wird.

Julius-Maximilians-Universität Würzburg


Konventionelle (links) und spiegelverstärkte dSTORM-Bilder (rechts) eines einzelnen NPC-Rings.

Julius-Maximilians-Universität Würzburg

Ursache dieser Unschärfe ist die Beugung: Sie sorgt vereinfacht gesagt dafür, dass Lichtstrahlen sich nicht beliebig fein bündeln lassen. Jedes punktförmiges Objekt wird daher nicht als Punkt, sondern als „Fleck“ abgebildet.

Mit mathematischen Methoden lässt sich das Auflösungsvermögen dennoch deutlich verbessern. Dazu berechnet man aus der Helligkeitsverteilung des „Flecks“ sein exaktes Zentrum.

Das funktioniert aber nur, wenn z­­wei nahe benachbarte Punkte des Untersuchungsobjekts zunächst nicht gleichzeitig, sondern nacheinander sichtbar sind, und erst später in der Bildbearbeitung zusammengeführt werden.

Durch diese zeitliche Entkopplung wird eine Überlagerung der „Flecken“ verhindert. Forschende in den Lebenswissenschaften nutzen dieses trickreiche Verfahren seit einigen Jahren, zur superhochauflösenden Lichtmikroskopie von Zellen.

Eine Variante dieses Verfahrens, das an der Universität Würzburg in der Arbeitsgruppe von Prof. Dr. Markus Sauer entwickelt wurde, ist die so genannte dSTORM-Methode.

Hierfür werden bestimmte Strukturen – zum Beispiel eine Pore eines Zellkerns – mit fluoreszierenden Farbstoffen angefärbt. Jedes der Farbstoff-Moleküle blinkt in unregelmäßigen Abständen auf und repräsentiert einen Teil der Pore. Das Bild der kompletten Kernporen ist also zunächst nicht sichtbar, sondern entsteht erst nach der Bildbearbeitung durch die Überlagerung mehrerer tausend Bilder.

Mit dem dSTORM-Verfahren lässt sich die Auflösung eines herkömmlichen Lichtmikroskops um den Faktor zehn steigern. „Dadurch ist zum Beispiel die Architektur einer Zelle bis auf Molekül-Niveau sichtbar“, erklärt Hannah Heil.

Die Forscherin promoviert am Rudolf-Virchow-Zentrum der Universität Würzburg in der Gruppe von Prof. Dr. Katrin Heinze. Sie konnte die Methode nun zusammen mit ihren Kolleginnen und Kollegen noch einmal entscheidend verbessern: Mit Hilfe eines einfachen Tricks ist es ihnen gelungen, die Auflösung nahezu zu verdoppeln.

Spieglein, Spieglein an der Wand: Welches Bild ist das schärfste im ganzen Land?

Dazu bedampften sie ein Deckglas, auf dem die Zelle während der Beobachtung liegt, mit einer dünnen spiegelnden Nanobeschichtung, die aus Silber und transparentem Silizium-Nitrit bestand.

Die Beschichtung ist biokompatibel, schädigt also die Zelle nicht. Mit dieser Methode erzielten die beiden Arbeitsgruppen zwei Effekte: Einerseits reflektierte der Spiegel das von der Pore ausgestrahlte Licht zurück zum Mikroskop, wodurch sich die Helligkeit des Fluoreszenzsignals erhöhte und somit ebenfalls die effektive Bildschärfe.

Dazu kommt ein zweites Phänomen: Die ausgestrahlten und die reflektierten Lichtwellen überlagern sich. Dadurch entstehen so genannte Interferenzen. Dabei wird je nach Entfernung zum Spiegel das Licht verstärkt oder abgeschwächt.

„Auf diese Weise sehen wir vor allem Strukturen in einer bestimmten Bildebene“, sagt Heil. „Alles was sich darüber oder darunter befindet und das Bild eventuell stören könnte, wird dagegen ausgeblendet.“ Damit genau die gewünschten Bildteile sichtbar werden, muss die Dicke der auf den Spiegel aufgebrachten transparenten Lage passend gewählt werden. Heinze und Heil nutzen unter anderem Computer-Simulationen, um die Beschichtung je nach Objekt maßzuschneidern.

Insgesamt sei die Methode erstaunlich leicht anzuwenden, betont Hannah Heil. „Das ist es, was ich an unserem Ansatz besonders mag.“ Prof. Heinze ergänzt: „Abgesehen von dem beschichteten Träger, dessen Herstellung kaum etwas kostet, benötigt man keine zusätzliche Mikroskopie-Hardware oder Software, um die Auflösung zu steigern. Das Verfahren ist also ein fantastisches Add-On für die moderne Mikroskopie.“

Personen
Prof. Dr. Katrin Heinze leitet seit 2011 eine Forschungsgruppe am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg. Seit 2017 ist sie Universitätsprofessorin für Molekulare Mikroskopie.

Prof. Dr. Markus Sauer leitet seit 2009 den Lehrstuhl für Biotechnologie und Biophysik im Biozentrum der Universität Würzburg.

Wissenschaftliche Ansprechpartner:

Hannah Heil (Arbeitsgruppe Heinze, Rudolf-Virchow-Zentrum, Universität Würzburg)
Tel. +49 (0)931 31 89609, hannah.heil@uni-wuerzburg.de

Prof. Dr. Katrin Heinze (Rudolf-Virchow-Zentrum, Universität Würzburg)
Tel. +49 (0)931 31 84214, katrin.heinze@virchow.uni-wuerzburg.de

Prof. Dr. Markus Sauer (Biozentrum, Universität Würzburg)
Tel. +49 (0)931 31 84507, m.sauer@uni-wuerzburg.de

Dr. Daniela Diefenbacher (Pressestelle, Rudolf-Virchow-Zentrum)
Tel. +49 (0)931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Originalpublikation:

Hannah S. Heil, Benjamin Schreiber, Ralph Götz, Monika Emmerling, Marie-Christine Dabauvalle, Georg Krohne, Sven Hoefling, Martin Kamp, Markus Sauer, Katrin G. Heinze: Sharpening emitter localization in front of a tuned mirror; Light: Science and Applications; DOI: https://doi.org/10.1038/s41377-018-0104-z

Weitere Informationen:

https://www.uni-wuerzburg.de/de/rvz/neuigkeiten/single/news/neue-methode-verpass...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung
16.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Schrödingers Katze mit 20 Qubits
13.08.2019 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019 | Physik Astronomie

Solarflugzeug icaré testet elektrische Flächenendantriebe

16.08.2019 | Energie und Elektrotechnik

Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert

16.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics