Neue Methode verpasst Mikroskop einen Auflösungsschub

Schematische Darstellung eines mit roten Fluoreszenzfarbstoffen markierten Kernporenkomplexes, der von der Kernmembran umhüllt und auf einer Verspiegelung aufgebracht wird. Julius-Maximilians-Universität Würzburg

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen ineinander – sie lassen sich nicht mehr voneinander unterscheiden.

Ursache dieser Unschärfe ist die Beugung: Sie sorgt vereinfacht gesagt dafür, dass Lichtstrahlen sich nicht beliebig fein bündeln lassen. Jedes punktförmiges Objekt wird daher nicht als Punkt, sondern als „Fleck“ abgebildet.

Mit mathematischen Methoden lässt sich das Auflösungsvermögen dennoch deutlich verbessern. Dazu berechnet man aus der Helligkeitsverteilung des „Flecks“ sein exaktes Zentrum.

Das funktioniert aber nur, wenn z­­wei nahe benachbarte Punkte des Untersuchungsobjekts zunächst nicht gleichzeitig, sondern nacheinander sichtbar sind, und erst später in der Bildbearbeitung zusammengeführt werden.

Durch diese zeitliche Entkopplung wird eine Überlagerung der „Flecken“ verhindert. Forschende in den Lebenswissenschaften nutzen dieses trickreiche Verfahren seit einigen Jahren, zur superhochauflösenden Lichtmikroskopie von Zellen.

Eine Variante dieses Verfahrens, das an der Universität Würzburg in der Arbeitsgruppe von Prof. Dr. Markus Sauer entwickelt wurde, ist die so genannte dSTORM-Methode.

Hierfür werden bestimmte Strukturen – zum Beispiel eine Pore eines Zellkerns – mit fluoreszierenden Farbstoffen angefärbt. Jedes der Farbstoff-Moleküle blinkt in unregelmäßigen Abständen auf und repräsentiert einen Teil der Pore. Das Bild der kompletten Kernporen ist also zunächst nicht sichtbar, sondern entsteht erst nach der Bildbearbeitung durch die Überlagerung mehrerer tausend Bilder.

Mit dem dSTORM-Verfahren lässt sich die Auflösung eines herkömmlichen Lichtmikroskops um den Faktor zehn steigern. „Dadurch ist zum Beispiel die Architektur einer Zelle bis auf Molekül-Niveau sichtbar“, erklärt Hannah Heil.

Die Forscherin promoviert am Rudolf-Virchow-Zentrum der Universität Würzburg in der Gruppe von Prof. Dr. Katrin Heinze. Sie konnte die Methode nun zusammen mit ihren Kolleginnen und Kollegen noch einmal entscheidend verbessern: Mit Hilfe eines einfachen Tricks ist es ihnen gelungen, die Auflösung nahezu zu verdoppeln.

Spieglein, Spieglein an der Wand: Welches Bild ist das schärfste im ganzen Land?

Dazu bedampften sie ein Deckglas, auf dem die Zelle während der Beobachtung liegt, mit einer dünnen spiegelnden Nanobeschichtung, die aus Silber und transparentem Silizium-Nitrit bestand.

Die Beschichtung ist biokompatibel, schädigt also die Zelle nicht. Mit dieser Methode erzielten die beiden Arbeitsgruppen zwei Effekte: Einerseits reflektierte der Spiegel das von der Pore ausgestrahlte Licht zurück zum Mikroskop, wodurch sich die Helligkeit des Fluoreszenzsignals erhöhte und somit ebenfalls die effektive Bildschärfe.

Dazu kommt ein zweites Phänomen: Die ausgestrahlten und die reflektierten Lichtwellen überlagern sich. Dadurch entstehen so genannte Interferenzen. Dabei wird je nach Entfernung zum Spiegel das Licht verstärkt oder abgeschwächt.

„Auf diese Weise sehen wir vor allem Strukturen in einer bestimmten Bildebene“, sagt Heil. „Alles was sich darüber oder darunter befindet und das Bild eventuell stören könnte, wird dagegen ausgeblendet.“ Damit genau die gewünschten Bildteile sichtbar werden, muss die Dicke der auf den Spiegel aufgebrachten transparenten Lage passend gewählt werden. Heinze und Heil nutzen unter anderem Computer-Simulationen, um die Beschichtung je nach Objekt maßzuschneidern.

Insgesamt sei die Methode erstaunlich leicht anzuwenden, betont Hannah Heil. „Das ist es, was ich an unserem Ansatz besonders mag.“ Prof. Heinze ergänzt: „Abgesehen von dem beschichteten Träger, dessen Herstellung kaum etwas kostet, benötigt man keine zusätzliche Mikroskopie-Hardware oder Software, um die Auflösung zu steigern. Das Verfahren ist also ein fantastisches Add-On für die moderne Mikroskopie.“

Personen
Prof. Dr. Katrin Heinze leitet seit 2011 eine Forschungsgruppe am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg. Seit 2017 ist sie Universitätsprofessorin für Molekulare Mikroskopie.

Prof. Dr. Markus Sauer leitet seit 2009 den Lehrstuhl für Biotechnologie und Biophysik im Biozentrum der Universität Würzburg.

Hannah Heil (Arbeitsgruppe Heinze, Rudolf-Virchow-Zentrum, Universität Würzburg)
Tel. +49 (0)931 31 89609, hannah.heil@uni-wuerzburg.de

Prof. Dr. Katrin Heinze (Rudolf-Virchow-Zentrum, Universität Würzburg)
Tel. +49 (0)931 31 84214, katrin.heinze@virchow.uni-wuerzburg.de

Prof. Dr. Markus Sauer (Biozentrum, Universität Würzburg)
Tel. +49 (0)931 31 84507, m.sauer@uni-wuerzburg.de

Dr. Daniela Diefenbacher (Pressestelle, Rudolf-Virchow-Zentrum)
Tel. +49 (0)931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Hannah S. Heil, Benjamin Schreiber, Ralph Götz, Monika Emmerling, Marie-Christine Dabauvalle, Georg Krohne, Sven Hoefling, Martin Kamp, Markus Sauer, Katrin G. Heinze: Sharpening emitter localization in front of a tuned mirror; Light: Science and Applications; DOI: https://doi.org/10.1038/s41377-018-0104-z

https://www.uni-wuerzburg.de/de/rvz/neuigkeiten/single/news/neue-methode-verpass…

Media Contact

Dr. Daniela Diefenbacher idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer