Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode für Einblicke in Wechselwirkungen zwischen Molekülen / Atomar definierte Mess-Spitze

10.04.2018

Nanowissenschaftler der WWU zeigen nun in einer im Fachmagazin „Nature Nanotechnology“ veröffentlichten Studie, wie die Strukturen organischer Moleküle mit ungeahnter Genauigkeit sichtbar gemacht werden können. Die neue Methode basiert auf der Rasterkraftmikroskopie.

Wie die Strukturen organischer Moleküle mit ungeahnter Genauigkeit sichtbar gemacht werden können, zeigen Physiker und Chemiker der Westfälischen Wilhelms-Universität Münster (WWU) nun in einer im Fachmagazin „Nature Nanotechnology“ online veröffentlichten Studie. Der Schlüssel für die besondere Genauigkeit des mikroskopischen Verfahrens liegt in der hohen Stabilität einer außergewöhnlich scharfen und atomar definierten Mess-Spitze.


Übersichtsbild eines selbstorganisierten molekularen Netzwerks. Die Vergrößerung rechts zeigt ein einzelnes Molekül (Mitte), das von sechs teilweise sichtbaren Molekülen umgeben ist.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


Dr. Harry Mönig im Labor

© WWU/Florian Fontein

Den neuen Ansatz, mit dem die strukturellen und chemischen Eigenschaften von organischen Molekülen mit höchster Präzision abgebildet werden können, haben die Wissenschaftler vom Fachbereich Physik der WWU in den Laboren des Center for Nanotechnology (CeNTech) in Münster entwickelt. Die Methode basiert auf der Rasterkraftmikroskopie, bei der Probenoberflächen mit einer atomar feinen Spitze „abgetastet“ und somit abgebildet werden können.

Dr. Harry Mönig, federführender Autor der Studie, erklärt: “Die Besonderheit ist, dass wir die Mess-Spitze aus Kupfer mit einem einzelnen Sauerstoffatom chemisch passivieren.” Passivieren bedeutet hier: Das Sauerstoffatom verhindert unerwünschte Wechselwirkungen der Mess-Spitze mit den Atomen der Probenoberfläche. Im Gegensatz zu bisher etablierten Verfahren ist das Sauerstoffatom besonders stabil an die Mess-Spitze gebunden, wodurch Abbildungsartefakte auf ein Minimum reduziert werden können.

Prof. Dr. Harald Fuchs, Ko-Autor der Studie, betont: „Das Potenzial der neu entwickelten Methode ist beträchtlich. So kann man nun die Bindungsstrukturen molekularer Netzwerke mit ungeahnter Genauigkeit untersuchen.“

Dies erlaube detaillierte Einblicke in die Wechselwirkungen, die zwischen Molekülen auftreten. Das Wissen um diese Wechselwirkungen sei besonders wichtig für die Entwicklung neuer sogenannter nanostrukturierter Materialien. Bei diesen Materialien nutzt man das Phänomen, dass schon winzige Unterschiede auf der Nanoskala die Materialeigenschaften deutlich verändern können.

Besonders klar ist dieser Effekt zum Beispiel beim Vergleich zwischen Diamant, der sehr hart ist, und dem relativ weichen Grafit. Beide Materialien bestehen aus reinem Kohlenstoff. Allein die Anordnung der Kohlenstoff-Atome und ihre Bindung untereinander sind unterschiedlich.

Gefördert wurden die Arbeiten durch die Deutsche Forschungsgemeinschaft (DFG).

Originalveröffentlichung:

Harry Mönig, Saeed Amirjalayer, Alexander Timmer, Zhixin Hu, Lacheng Liu, Oscar Díaz Arado, Marvin Cnudde, Cristian Alejandro Strassert, Wei Ji, Michael Rohlfing and Harald Fuchs (2018): Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nature Nanotechnology, Published online: 09 April 2018, DOI: 10.1038/s41565-018-0104-4

Weitere Informationen:

https://rdcu.be/K2fZ Originalveröffentlichung (SharedIt)

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics