Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Messtechnik für Nanostrukturen

20.08.2014

Zwei elektrische Isolatoren aneinander bringen und dadurch einen elektrischen Supraleiter erzeugen: Wer solche Phänomene in Nanostrukturen analysieren will, stößt schnell an messtechnische Grenzen – es sei denn, er benutzt eine neue Methode, die Würzburger Physiker mitentwickelt haben.

Moderne elektronische Geräte beinhalten Bauelemente wie Transistoren und Dioden, die aus Halbleiterschichten aus Silizium, Germanium oder Gallium und Arsen bestehen. Die Halbleiter aus diesen chemischen Elementen haben relativ einfache Eigenschaften, die wissenschaftlich gut charakterisiert sind.


Röntgeninterferenzmuster, das bei der Untersuchung von komplexen Nano-Schichtstrukturen gemessen wird. Die Skizze verdeutlicht den Strahlengang des Röntgenlichts bezüglich der Probenoberfläche.

Grafik: Sebastian Macke

Entsprechend einfach sind auch die Anwendungsmöglichkeiten solcher Schichtstrukturen in Speicherbausteinen und Mikroprozessoren: „Technologische Verbesserungen zielen überwiegend auf eine weitere Miniaturisierung, auf eine zunehmende Dichte der Bauelemente und auf eine höhere Geschwindigkeit“, so Physikprofessor Vladimir Hinkov von der Universität Würzburg.

Welche Elemente interessante Phänomene zeigen

Völlig neue Möglichkeiten verspricht sich die Wissenschaft dagegen von Bauelementen, die Mangan, Nickel, Titan und andere Elemente aus den sogenannten Nebengruppen enthalten.

„Diese Metalle besitzen Elektronenwolken, die komplexere Bindungen und Elektronenkonfigurationen ermöglichen. Das führt zu physikalischen Phänomenen, die bei Halbleitern unbekannt sind“, sagt Hinkov. Als Beispiele für solche Phänomene nennt er den kolossalen Magnetowiderstand und verschiedene magnetische Ordnungen, die allesamt bei Oxiden dieser Metalle auftreten.

Noch interessantere Anwendungsmöglichkeiten eröffnen sich, wenn man diese Oxide in hauchdünnen Schichten aufeinander bringt, die teilweise nur wenige Atomlagen dick sind.

So verschwindet an der Grenzfläche zwischen Strontium-Titanat (SrTiO3) und Lanthan-Aluminat (LaAlO3) komplett der elektrische Widerstand – obwohl beide Materialien für sich genommen einen sehr hohen elektrischen Widerstand haben, werden sie an ihrer gemeinsamen Grenzfläche zum Supraleiter. Nicht verwunderlich also, dass solche Nanostrukturen intensiv erforscht werden.

Warum die Analyse der Nanostrukturen kompliziert ist

Chemische Zusammensetzung, magnetische Ordnung, Verteilung der Elektronen in den Elektronenwolken: „Die Erfassung dieser Eigenschaften klingt einfach, ist aber in Wahrheit hoch kompliziert und mit herkömmlichen Messmethoden in den wenigsten Fällen möglich“, sagt der Würzburger Physikprofessor. Ein Grund dafür: Die interessanten Phänomene spielen sich im Nanokosmos ab, auf Längenskalen von nur wenigen Nanometern.

Zwar gibt es Messmethoden mit einer Auflösung im Nanometerbereich, doch die haben Nachteile. Beispiel: die weit verbreitete Rastertransmissionselektronenmikroskopie (STEM). Bei ihr werden aus einer Nanostruktur dünne Scheiben herausgeschnitten und mit einem Elektronenstrahl abgetastet. Die Probe muss also für die Untersuchung zerstört werden – doch dabei können sich die Eigenschaften verändern, die man eigentlich analysieren will.

Was die neu entwickelte Messmethode leisten kann

Mit Vladimir Hinkov als Koordinator hat jetzt ein Wissenschaftler-Team aus Deutschland, Kanada und den USA eine viel versprechende neue Messmethode entwickelt und im Fachblatt „Advanced Materials“ vorgestellt. Sie arbeitet zerstörungsfrei, bietet eine Auflösung im Nanometerbereich, identifiziert die beteiligten chemischen Elemente und kann die magnetische Ordnung sowie die Elektronenverteilung bestimmen.

Geringe Spuren von Elementen, die tief in der Nanostruktur verborgen sind, kann man mit der Methode ebenfalls nachweisen. Selbst in Strukturen aus vielen Elementen und mit komplexen Schichtabfolgen lassen sich damit die chemischen Profile bestimmen.

Die Methode, eine Weiterentwicklung der resonanten Röntgenreflektometrie, basiert auf der Streuung von Röntgenstrahlung mit einer Wellenlänge von wenigen Nanometern an den Grenzflächen der Schichtstruktur: Die verschiedenen gestreuten Teilstrahlen werden dann zum Überlagern gebracht und gemessen.

Die Messdaten liefern, nach entsprechender Bearbeitung, ein tiefenaufgelöstes Bild der Struktur. Darin ähnelt die Methode der optischen Holographie, die benutzt wird, um Abbildungen mit räumlicher Auflösung zu erzeugen.

Warum für den Erfolg viele Spezialisten nötig waren

„Ein Unterfangen in dieser Größenordnung war nur unter der Beteiligung von Kollegen aus verschiedensten Teildisziplinen möglich“, sagt Hinkov. So braucht es zunächst Röntgenlicht von hoher Intensität und Qualität, wie es nur an Synchrotronen erzeugt werden kann. Die Messungen finden an hoch spezialisierten Instrumenten statt, die die Forscher direkt am Synchrotron aufgebaut haben.

Nötig sind weiterhin Nanostrukturen von höchster Qualität, um die Methode zu verfeinern und zu testen. Die Messdaten werden mit einer speziell entwickelten Software ausgewertet, und schließlich müssen die Ergebnisse mit Theoretikern diskutiert werden, um ein vertieftes Verständnis der Phänomene zu erlangen.

Wie die nächsten Forschungsschritte aussehen

„Wir arbeiten seit mehreren Jahren intensiv an diesem Projekt, und jetzt hat sich unsere Geduld voll ausgezahlt“, freut sich der Würzburger Physiker. Zwar seien die untersuchten Schichtstrukturen noch keine Bauelemente für Anwendungen. Doch die verwendeten Materialien seien technologisch relevant und die nächsten Entwicklungsschritte klar:

„Die Erforschung von Strukturen mit interessanten magnetischen und elektronischen Eigenschaften, und in nicht allzu ferner Zukunft das Design von Elementen mit maßgeschneiderten physikalischen und technologischen Eigenschaften“, so Hinkov. Schaltbarer Magnetismus, Supraleitung und neuartige Sensoren seien einige Anwendungen, die hier vielversprechende Möglichkeiten bieten.

“Element Specific Monolayer Depth Profiling”, Sebastian Macke, Abdullah Radi, Jorge E. Hamann-Borrero, Martin Bluschke, Sebastian Brück, Eberhard Goering, Ronny Sutarto, Feizhou He, Georg Cristiani, Meng Wu, Eva Benckiser, Hanns-Ulrich Habermeier, Gennady Logvenov, Nicolas Gauquelin, Gianluigi A. Botton, Adam P. Kajdos, Susanne Stemmer, Georg A. Sawatzky, Maurits W. Haverkort, Bernhard Keimer, and Vladimir Hinkov. Advanced Materials, 8. August 2014, DOI: 10.1002/adma.201402028

Kontakt

Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV, Universität Würzburg, hinkov@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics