Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialien auf der Basis von Rost könnten Wärmeentwicklung bei Rechnern verringern

13.09.2018

Physiker beobachten Übertragung von Informationen über große Distanzen in antiferromagnetischem Eisenoxid-Kristall

Wissenschaftlern ist es gelungen, eine Langstreckenübertragung von Daten in einem isolierenden Antiferromagneten zu beobachten. Antiferromagnete sind eine Gruppe magnetischer Materialien, mit denen wesentlich schnellere Rechengeschwindigkeiten zu erreichen sind als mit herkömmlichen ferromagnetischen Bauteilen.


Elektrischer Strom in einem Platindraht (links) erzeugt eine magnetische Welle in antiferromagnetischem Eisenoxid (rote und blaue Wellenlinien). Diese wird in einem zweiten Platindraht (rechts) in eine messbare Spannung umgewandelt. Die roten und blauen Pfeile stellen die antiferromagnetische Ausrichtung des Eisenoxids dar.

Abb./©: Andrew Ross

Konventionelle Geräte auf der Basis von derzeitigen metallischen und Halbleiter-Technologien haben den unerwünschten Nebeneffekt, dass sie zu heiß werden und ihre Geschwindigkeit an Grenzen kommt. Dies verzögert den Fortschritt in der Informationstechnologie.

Das aufstrebende Gebiet der Magnonik versucht, diese Probleme mithilfe von elektrisch isolierenden Materialien zu lösen, die magnetische Wellen, sogenannte Magnonen, transportieren können. Magnonen sind in der Lage, Daten ohne den nachteiligen Effekt der übermäßigen Wärmeproduktion durch Ladungstransport zu übermitteln.

Physiker der Johannes Gutenberg-Universität Mainz (JGU) haben in Kooperation mit Theoretikern der Utrecht University in den Niederlanden und des Center for Quantum Spintronics in Norwegen nachgewiesen, dass antiferromagnetisches Eisenoxid, der Hauptbestandteil von Rost, ein billiges und vielversprechendes Material für den Informationstransport darstellt – bei geringerem Energieverlust und damit weniger Abwärme. Die Arbeit wurde jetzt im Fachmagazin Nature veröffentlicht.

Wenn weniger Wärme erzeugt wird, können die Komponenten noch kleiner werden, während gleichzeitig die Informationsdichte steigt. Antiferromagnete, die größte Gruppe der magnetischen Materialien, haben einige entscheidende Vorteile gegenüber anderen üblicherweise verwendeten metallischen magnetischen Komponenten, die auf Eisen oder Nickel basieren.

Sie sind zum Beispiel stabil und unempfindlich gegenüber externen magnetischen Feldern – eine zentrale Bedingung für künftige Datenspeichersysteme. Außerdem haben Bauteile auf der Basis von Antiferromagneten das Potenzial, einige tausend Mal schneller zu arbeiten als herkömmliche Technologien: Die intrinsische Dynamik liegt im Terahertz-Bereich und damit potenziell über einer Billion Arbeitsprozessen pro Sekunde.

Schnelle Rechengeräte mit antiferromagnetischen Isolatoren im Bereich des Möglichen

In ihrer Studie haben die Wissenschaftler ein Eisenoxid-Kristall, ein antiferromagnetischer Isolator, mit Platindrähten versehen, in denen ein elektrischer Strom fließt. Dieser elektrische Strom veranlasst eine Energieübertragung von Platin in das Eisenoxid und dadurch die Entstehung von Magnonen. Die Physiker stellten fest, dass das Eisenoxid in der Lage war, Informationen mithilfe von Magnonen über die weiten Entfernungen zu transportieren, die für Rechenbauteile notwendig sind.

„Das Ergebnis zeigt, dass Antiferromagnete potenziell als Ersatz für die derzeit verwendeten Komponenten geeignet sind“, teilt Dr. Romain Lebrun vom Institut für Physik der JGU mit. „Schnelle Geräte auf Basis antiferromagnetischer Isolatoren sind jetzt in den Bereich des Vorstellbaren gerückt“, führte er weiter aus.

Andrew Ross, einer der Autoren der Studie, ergänzt: „Falls man imstande ist, isolierende Antiferromagnete zu kontrollieren, könnten sie ohne exzessive Wärmeproduktion arbeiten und wären stabil gegenüber externen Störungen.“ Prof. Dr. Mathias Kläui, Seniorautor der Studie, bemerkt dazu: „Ich freue mich sehr, dass diese Arbeit in einer internationalen Zusammenarbeit erreicht wurde. Internationalisierung ist ein Hauptziel unserer Forschungsgruppe und insbesondere auch unserer Exzellenz-Graduiertenschule Materials Science in Mainz. Kooperationen mit weltweit führenden Institutionen wie dem Center for Quantum Spintronics und der Utrecht University machen Spitzenforschung möglich.“

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_antiferromagnet_eisenoxid....
Elektrischer Strom in einem Platindraht (links) erzeugt eine magnetische Welle in antiferromagnetischem Eisenoxid (rote und blaue Wellenlinien). Diese wird in einem zweiten Platindraht (rechts) in eine messbare Spannung umgewandelt. Die roten und blauen Pfeile stellen die antiferromagnetische Ausrichtung des Eisenoxids dar.
Abb./©: Andrew Ross

Weiterführende Links:
https://www.klaeui-lab.physik.uni-mainz.de/ - Kläui-Laboratory am Institut für Physik
https://www.iph.uni-mainz.de – Institut für Physik der JGU
http://www.mainz.uni-mainz.de/ - Graduiertenschule MAINZ
https://www.uni-kl.de/de/trr173/ – SFB/Transregio 173 „Spin+X – Spin in its collective environment"

Lesen Sie mehr:
http://www.uni-mainz.de/presse/aktuell/4356_DEU_HTML.php - Pressemitteilung „Baukasten der Magnon-Logik erweitert: Magnon-Ströme über Spin-Ventil-Struktur steuerbar“ (14.03.2018)

Wissenschaftliche Ansprechpartner:

Dr. Romain Lebrun
Physik der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23637
Fax +49 6131 39-24076
E-Mail: rolebrun@uni-mainz.de

Prof. Dr. Mathias Kläui
Physik der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Originalpublikation:

Romain Lebrun et al.
Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
Nature, 12. September 2018
DOI: 10.1038/s41586-018-0490-7
https://www.nature.com/articles/s41586-018-0490-7

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Geburtsstätten der Sterne in unserer Milchstraße
13.09.2018 | Leibniz-Institut für Astrophysik Potsdam

nachricht Elektronensysteme: Präzise Untersuchung einzelner Randkanäle
12.09.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Materialien auf der Basis von Rost könnten Wärmeentwicklung bei Rechnern verringern

Physiker beobachten Übertragung von Informationen über große Distanzen in antiferromagnetischem Eisenoxid-Kristall

Wissenschaftlern ist es gelungen, eine Langstreckenübertragung von Daten in einem isolierenden Antiferromagneten zu beobachten. Antiferromagnete sind eine...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Bahnverkehr wird smart – innovativer Batteriezug ab 2019 im Testbetrieb

Rund 40 Prozent des deutschen Schienennetzes sind nicht elektrifiziert. Die Bahnen sind hier auf Dieselfahrzeuge angewiesen. Der Schienenverkehr soll jedoch umweltfreundlicher werden, Züge in Zukunft mit Strom fahren – und das auch auf Strecken ohne Oberleitung. Die Technische Universität Berlin arbeitet daher gemeinsam mit Bombardier Transportation an einem Zug mit batterieelektrischem Antrieb. Dieser kann unter Oberleitung zwar als Elektrotriebzug fahren, ist jedoch auf keine externe Stromleitung angewiesen. In 2019 sollen bereits Strecken von bis zu 100 Kilometern alleine durch den Batterieantrieb bewältigt werden.

Der emissionsfreie Zug setzt dabei mit einem Wirkungsgrad von rund 90 Prozent Maßstäbe für einen energieeffizienten Bahnbetrieb. Er ist außerdem zu 90 Prozent...

Im Focus: Aus Holzabfällen erfolgreich erneuerbares Gas produziert

Karlsruher Forschern ist es mit einer Pilotanlage für Waben-Methanisierung gelungen, aus einem aus Biomasse hergestellten Synthesegasgemisch hochwertiges und damit anwendungsfreundliches erneuerbares Methan zu produzieren. Der in Fachkreisen SNG (Synthetic Natural Gas) genannte Energieträger eignet sich sowohl als Brennstoff für Blockheizkraftwerke und Heizungsanlagen als auch als Treibstoff für Autos oder Lkw und ist dem fossilen Erdgas qualitativ ebenbürtig. Die Pilotanlage haben Forscher des Karlsruher Instituts für Technologie (KIT) und der Forschungsstelle des Deutschen Vereins des Gas- und Wasserfaches (DVGW) entwickelt und getestet.

Wärme und Mobilität werden derzeit noch überwiegend aus fossilen Quellen gespeist. Um auch diese Sektoren in Zukunft nachhaltig und umweltschonend mit Energie...

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemie zum Anfassen

13.09.2018 | Veranstaltungen

Genomchirurgie – neue Allzweckwaffe gegen Krankheiten?

12.09.2018 | Veranstaltungen

Aktuelles aus der Werkstoff-, Oberflächen- und Fügetechnik

12.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Geburtsstätten der Sterne in unserer Milchstraße

13.09.2018 | Physik Astronomie

Pflanzenforschung: Neuer Mechanismus bei der Genregulation gefunden

13.09.2018 | Biowissenschaften Chemie

Schilddrüsenknoten schonend entfernen - neue, erfolgreiche Hitzebehandlung aus Asien

13.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics