Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialien auf der Basis von Rost könnten Wärmeentwicklung bei Rechnern verringern

13.09.2018

Physiker beobachten Übertragung von Informationen über große Distanzen in antiferromagnetischem Eisenoxid-Kristall

Wissenschaftlern ist es gelungen, eine Langstreckenübertragung von Daten in einem isolierenden Antiferromagneten zu beobachten. Antiferromagnete sind eine Gruppe magnetischer Materialien, mit denen wesentlich schnellere Rechengeschwindigkeiten zu erreichen sind als mit herkömmlichen ferromagnetischen Bauteilen.


Elektrischer Strom in einem Platindraht (links) erzeugt eine magnetische Welle in antiferromagnetischem Eisenoxid (rote und blaue Wellenlinien). Diese wird in einem zweiten Platindraht (rechts) in eine messbare Spannung umgewandelt. Die roten und blauen Pfeile stellen die antiferromagnetische Ausrichtung des Eisenoxids dar.

Abb./©: Andrew Ross

Konventionelle Geräte auf der Basis von derzeitigen metallischen und Halbleiter-Technologien haben den unerwünschten Nebeneffekt, dass sie zu heiß werden und ihre Geschwindigkeit an Grenzen kommt. Dies verzögert den Fortschritt in der Informationstechnologie.

Das aufstrebende Gebiet der Magnonik versucht, diese Probleme mithilfe von elektrisch isolierenden Materialien zu lösen, die magnetische Wellen, sogenannte Magnonen, transportieren können. Magnonen sind in der Lage, Daten ohne den nachteiligen Effekt der übermäßigen Wärmeproduktion durch Ladungstransport zu übermitteln.

Physiker der Johannes Gutenberg-Universität Mainz (JGU) haben in Kooperation mit Theoretikern der Utrecht University in den Niederlanden und des Center for Quantum Spintronics in Norwegen nachgewiesen, dass antiferromagnetisches Eisenoxid, der Hauptbestandteil von Rost, ein billiges und vielversprechendes Material für den Informationstransport darstellt – bei geringerem Energieverlust und damit weniger Abwärme. Die Arbeit wurde jetzt im Fachmagazin Nature veröffentlicht.

Wenn weniger Wärme erzeugt wird, können die Komponenten noch kleiner werden, während gleichzeitig die Informationsdichte steigt. Antiferromagnete, die größte Gruppe der magnetischen Materialien, haben einige entscheidende Vorteile gegenüber anderen üblicherweise verwendeten metallischen magnetischen Komponenten, die auf Eisen oder Nickel basieren.

Sie sind zum Beispiel stabil und unempfindlich gegenüber externen magnetischen Feldern – eine zentrale Bedingung für künftige Datenspeichersysteme. Außerdem haben Bauteile auf der Basis von Antiferromagneten das Potenzial, einige tausend Mal schneller zu arbeiten als herkömmliche Technologien: Die intrinsische Dynamik liegt im Terahertz-Bereich und damit potenziell über einer Billion Arbeitsprozessen pro Sekunde.

Schnelle Rechengeräte mit antiferromagnetischen Isolatoren im Bereich des Möglichen

In ihrer Studie haben die Wissenschaftler ein Eisenoxid-Kristall, ein antiferromagnetischer Isolator, mit Platindrähten versehen, in denen ein elektrischer Strom fließt. Dieser elektrische Strom veranlasst eine Energieübertragung von Platin in das Eisenoxid und dadurch die Entstehung von Magnonen. Die Physiker stellten fest, dass das Eisenoxid in der Lage war, Informationen mithilfe von Magnonen über die weiten Entfernungen zu transportieren, die für Rechenbauteile notwendig sind.

„Das Ergebnis zeigt, dass Antiferromagnete potenziell als Ersatz für die derzeit verwendeten Komponenten geeignet sind“, teilt Dr. Romain Lebrun vom Institut für Physik der JGU mit. „Schnelle Geräte auf Basis antiferromagnetischer Isolatoren sind jetzt in den Bereich des Vorstellbaren gerückt“, führte er weiter aus.

Andrew Ross, einer der Autoren der Studie, ergänzt: „Falls man imstande ist, isolierende Antiferromagnete zu kontrollieren, könnten sie ohne exzessive Wärmeproduktion arbeiten und wären stabil gegenüber externen Störungen.“ Prof. Dr. Mathias Kläui, Seniorautor der Studie, bemerkt dazu: „Ich freue mich sehr, dass diese Arbeit in einer internationalen Zusammenarbeit erreicht wurde. Internationalisierung ist ein Hauptziel unserer Forschungsgruppe und insbesondere auch unserer Exzellenz-Graduiertenschule Materials Science in Mainz. Kooperationen mit weltweit führenden Institutionen wie dem Center for Quantum Spintronics und der Utrecht University machen Spitzenforschung möglich.“

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_antiferromagnet_eisenoxid....
Elektrischer Strom in einem Platindraht (links) erzeugt eine magnetische Welle in antiferromagnetischem Eisenoxid (rote und blaue Wellenlinien). Diese wird in einem zweiten Platindraht (rechts) in eine messbare Spannung umgewandelt. Die roten und blauen Pfeile stellen die antiferromagnetische Ausrichtung des Eisenoxids dar.
Abb./©: Andrew Ross

Weiterführende Links:
https://www.klaeui-lab.physik.uni-mainz.de/ - Kläui-Laboratory am Institut für Physik
https://www.iph.uni-mainz.de – Institut für Physik der JGU
http://www.mainz.uni-mainz.de/ - Graduiertenschule MAINZ
https://www.uni-kl.de/de/trr173/ – SFB/Transregio 173 „Spin+X – Spin in its collective environment"

Lesen Sie mehr:
http://www.uni-mainz.de/presse/aktuell/4356_DEU_HTML.php - Pressemitteilung „Baukasten der Magnon-Logik erweitert: Magnon-Ströme über Spin-Ventil-Struktur steuerbar“ (14.03.2018)

Wissenschaftliche Ansprechpartner:

Dr. Romain Lebrun
Physik der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23637
Fax +49 6131 39-24076
E-Mail: rolebrun@uni-mainz.de

Prof. Dr. Mathias Kläui
Physik der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Originalpublikation:

Romain Lebrun et al.
Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
Nature, 12. September 2018
DOI: 10.1038/s41586-018-0490-7
https://www.nature.com/articles/s41586-018-0490-7

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics