Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Art von Laser

16.05.2013
Physikern der Universität Würzburg ist es gelungen, eine neuartige Form von Laser herzustellen.
Der funktioniert nach einem ganz anderen Prinzip als konventionelle Bauteile, wodurch die Möglichkeit einer deutlich reduzierten Energieaufnahme entsteht.

Licht, dessen Wellen im Gleichtakt schwingen, sendet er ebenfalls aus: Der Polariton-Laser, den Physiker am Lehrstuhl für Technische Physik der Universität Würzburg in enger Zusammenarbeit mit einem internationalem Forscherteam in jahrelangen Experimenten hergestellt und nachgewiesen, haben. Darin ähnelt er dem klassischen Halbleiter-Laser, wie er heutzutage überall zu finden ist – vom Labor bis zum CD-Player im heimischen Wohnzimmer.

Wie ein Polariton-Laser funktioniert

Grundlegend anders sind jedoch die physikalischen Prozesse, die in einem Polariton-Laser ablaufen. „Vereinfacht gesagt schicken wir Elektronen und Löcher durch das Anlegen einer elektrischen Spannung in einen Quantenfilm. Diese ziehen sich aufgrund der entgegengesetzten Ladung an und bilden gemeinsam ein sogenanntes Exziton. Durch die starke Licht-Materie-Kopplung dieser Exzitonen an eine Halbleitermikrokavität werden daraus Polaritonen. Diese zerfallen nach kurzer Zeit und dabei werden Photonen emittiert“, erklärt Sven Höfling, wissenschaftlicher Mitarbeiter am Lehrstuhl für Technische Physik, den Entstehungsmechanismus. Gemeinsam mit Christian Schneider und Arash Rahimi-Iman hat er die entsprechenden Experimente durchgeführt. In der aktuellen Ausgabe von Nature stellen die Physiker ihre Arbeit vor.

Beim Zerfall von Exzitonen entstehen Photonen. Diese werden von den Spiegeln der Kavität in Richtung des Quantenfilms zurückgeworfen. Dort können die Photonen wieder absorbiert werden, wobei erneut Exzitonen erzeugt werden. „Im Bereich der starken Kopplung entstehen somit ein periodischer Energieaustausch und neue Quasiteilchen, die so genannten Polaritonen“, sagt Höfling.

Steuerbare Eigenschaften des Polaritons

„Extrem klein ist die Masse eines Polaritons, annähernd so gering wie die eines Lichtteilchens in der Mikrokavität“, sagt Christian Schneider. Prinzipiell seien in einem Polariton jedoch die Eigenschaften von Exzitonen und Photonen gemischt. Welche von ihnen in welchem Grad ausgeprägt sind, können die Physiker durch den Aufbau ihres Experiments steuern.

Ewig zwischen den Spiegeln eingefangen bleiben die Polaritonen natürlich nicht. „Wir verwenden Spiegel mit einer endlichen Reflektivität“, erklärt Schneider. Das führt dazu, dass der Polariton-Laser ebenfalls kohärentes Licht – den Laserstrahl – emittiert. Das Ergebnis lässt sich anhand dieser Eigenschaft von dem eines konventionellen Lasers also kaum unterscheiden, auch wenn es auf einem gänzlich anderen Wirkmechanismus beruht. Allerdings benötigt ein Polariton-Laser für diesen Prozess deutlich weniger Energie; der Verbrauch sinke um ein bis zwei Größenordnungen, sagt Schneider.

Der Nachweis gestaltet sich schwierig

Bereits 2007 hatte Sven Höfling die Idee zur Realisierung eines elektrisch betriebenen Polariton-Lasers; 2008 hat die Gruppe mit den Experimenten begonnen. Relativ schnell lagen in Zusammenarbeit mit Kollegen der Universität in Stanford die ersten Ergebnisse vor. Dann zeigte sich allerdings ein ganz prinzipielles Problem: „Es ist extrem schwierig zu unterscheiden, ob man einen Polariton- oder einen normalen Laser hergestellt hat. Die Eigenschaften des emittierten Lichts sind normalerweise kaum unterscheidbar“, sagt Höfling.

Aus diesem Grund hat das internationale Forscherteam mit Partnern in den USA, Japan, Russland, Singapur, Island und Deutschland für einen eindeutigen Nachweis erste Experimente um eine weitere Komponente ergänzt. „Weil Materie sensibel auf ein Magnetfeld reagiert, haben wir unsere Messungen noch einmal durchgeführt und dabei die Probe unter einem Magnetfeld beobachtet“, erklärt Schneider. Das Ergebnis habe klar gezeigt, dass es sich tatsächlich um Polaritonen handelte.

Temperaturen von zehn Grad Kelvin – also minus 263 Grad Celsius – sind notwendig, damit der Würzburger Polariton-Laser funktioniert. Das wollen die Physiker ändern. Ihr Ziel ist es, den Prozess auch bei Raumtemperatur zum Laufen zu bringen. Das ist für sie noch aus einem weiteren Grund interessant: „Die Prozesse, die in einem Polariton-Laser ablaufen, sind eng verwandt mit denen in einem Bose-Einstein-Kondensat“, erklärt Christian Schneider.

Nah dran am Bose-Einstein-Kondensat

Das Bose-Einstein-Kondensat: Darunter verstehen Physiker ein Gebilde mit höchst merkwürdigen Eigenschaften. Man erhält es, wenn man Atome auf eine Temperatur sehr nahe an null Kelvin – also nahe dem absoluten Tiefpunkt – abkühlt. Dann geben die Atome ihre Eigenständigkeit auf und verhalten sich alle wie ein einziges Superatom.

Momentan freuen sich die Wissenschaftler über das bisher Erreichte: „Durch den elektrischen Betrieb bedeuten unsere Ergebnisse einen großen Schritt in Richtung des praktischen Nutzens von polaritonischen Lichtquellen“, sagt Sven Höfling. Und er ist zuversichtlich, dass mit den entsprechenden Materialien schon bald ein Polariton-Laser gebaut wird, der auch elektrisch bei Raumtemperatur funktioniert.

An electrically pumped polariton laser. Christian Schneider, Arash Rahimi-Iman, Na Young Kim, Julian Fischer, Ivan G. Savenko, Matthias Amthor, Matthias Lermer, Adriana Wolf, Lukas Worschech, Vladimir D. Kulakovskii, Ivan A. Shelykh, Martin Kamp, Stephan Reitzenstein, Alfred Forchel, Yoshihisa Yamamoto & Sven Höfling. Nature, doi:10.1038/nature12036

Kontakt
Dr. Sven Höfling,
T: (0931) 31-83613, sven.hoefling@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics