Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Terahertz-Quelle: kompakt und kostensparend

24.05.2016

Neue Möglichkeiten für Scanner und Qualitätskontrolle

Terahertz-Wellen bieten zahlreiche Anwendungsmöglichkeiten, zum Beispiel in Körperscannern, sie sind bisher jedoch schwierig und nur eingeschränkt zu erzeugen. Jülicher Wissenschaftler haben mit internationalen Partnern ein neuartiges Konzept zur Herstellung dieser elektromagnetischen Strahlung realisiert.


Prinzip der neuartigen Terahertz-Quelle: Ein extrem kurzer Laserimpuls lässt energiereiche Elektronen aus dem Magneten in den Nichtmagneten fließen. Entscheidend ist, dass es zwei Sorten von Elektronen gibt, die sich durch ihren Spin (dicke rote Pfeile) und ihre Anzahl unterscheiden. Im Nichtmagneten erfahren diese Elektronen eine Ablenkung ?, die von der Richtung des Elektronenspins abhängt. Der daraus resultierende kurze Stromfluss entlang des blauen Pfeiles erzeugt einen Terahertz-Impuls.

Copyright: Fritz-Haber-Institut


Foto des Prototyps

Copyright: Fritz-Haber-Institut

Ihr Emitter in Form einer dünnen Metallschicht kann das gesamte Terahertz-Spektrum erzeugen. Möglich macht dies die geschickte Nutzung der Spineigenschaft von Elektronen. Auf Basis dieses Prinzips lassen sich effizientere Quellen bauen, die erstmals lückenlos über die große Bandbreite von 1 bis 30 THz abstrahlen. Der neue Emitter ist zudem kompakter und kostengünstiger herstellbar. (Nature Photonics, DOI: 10.1038/nphoton.2016.91).

Terahertz-Wellen liegen im elektromagnetischen Spektrum zwischen den Mikrowellen und dem infraroten Licht im Frequenzbereich von etwa 1 bis 30 THz. Die Strahlung ist äußerst nützlich, denn sie durchdringt viele Materialien, darunter Textilien und Kunststoffe, und wird von anderen Substanzen auf charakteristische Weise absorbiert. Anders als etwa Röntgenstrahlen sind Terahertz-Strahlen gesundheitlich unbedenklich. Sie finden deshalb zum Beispiel in Körperscannern an Flughäfen Verwendung oder werden zur Qualitätskontrolle von Nahrungsmitteln genutzt.

Ein Hindernis für eine breitere Nutzung ist, dass Apparate, mit denen sich das gesamte Terahertz-Spektrum lückenlos erzeugen lässt, teuer und groß sind. Wissenschaftler des Forschungszentrums Jülich und Partner aus Deutschland, den USA, Schweden und Frankreich haben nun einen Terahertz-Emitter realisiert, der skalierbar ist und sich für Tischgeräte eignet.

"Unser Prototyp erzeugt das gesamte Terahertz-Spektrum von 1 bis 30 THz und ist dabei energieeffizienter, einfacher zu bedienen und günstiger in der Herstellung als bisherige Quellen", freut sich Prof. Dr. Yuriy Mokrousov, Leiter der Helmholtz-Nachwuchsgruppe für Topologische Nanoelektronik am Forschungszentrum Jülich. "Wir erwarten einen raschen und breiten Einsatz."

Die neuartige Quelle nutzt einen Femtosekundenlaser, der 80 Millionen ultrakurze Lichtblitze pro Sekunde erzeugt. Herkömmliche Apparate benötigen deutlich leistungsstärkere Laser, die viel teurer, aufwendiger und größer sind und mehr Energie verbrauchen.

Der neuartige Emitter hat Ähnlichkeit mit einer Photodiode oder auch Solarzelle: Die Beleuchtung des Materials mit einem ultrakurzen Laserblitz erzeugt einen Stromstoß, der dann einer Sendeantenne gleich einen elektromagnetischen Impuls abstrahlt. Der neuartige Emitter besteht im Gegensatz zu Solarzellen aus einem nur 5,8 Nanometer dünnen Metallfilm, so dass der Stromstoß extrem kurz ist und die Terahertz-Strahlung im Emittermaterial kaum abgeschwächt wird (s. Grafik für weitere Erläuterungen).

Nachdem die Forscher die verwendeten Metalle und Schichtdicken systematisch optimierten, reicht nun relativ schwache Laserstrahlung zur Erzeugung des gesamten Terahertz-Spektrums von 1 bis 30 THz aus.

Mokrousovs Kollege Dr. Frank Freimuth erklärt eine weitere wichtige Zutat der neuen Terahertz-Quelle: "Der Emitter funktioniert so gut, weil wir zusätzlich zur Ladung der Elektronen auch ihren Spin nutzen." Der Spin ist eine magnetische Eigenschaft der Elektronen und dafür verantwortlich, dass sich Strom in magnetischen Metallen anders verhält als in nichtmagnetischen. Dieser Effekt wird in der neuen Quelle geschickt ausgenutzt, um den Elektronentransport so zu steuern, so dass die Terahertz-Welle besonders gut abgestrahlt werden kann. Mit einem in Jülich entwickelten Rechencode halfen die beiden Physiker, geeignete Materialien auszuwählen und die experimentellen Ergebnisse zu verstehen.

Originalveröffentlichung:

Efficient metallic spintronic emitters of ultrabroadband terahertz radiation;
T. Seifert et al.;
Nature Photonics, DOI: 10.1038/nphoton.2016.91

Weitere Informationen:

Institutsbereich "Quanten-Theorie der Materialien" (PGI-1/IAS-1)

Ansprechpartner:

Prof. Dr. Yuriy Mokrousov, Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich, Tel. 02461 61-4434, E-Mail: y.mokrousov@fz-juelich.de

Dr. Frank Freimuth, Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich, Tel. 02461 61-1608, E-Mail: f.freimuth@fz-juelich.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik, | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Trennung von Gas und Flüssigkeit – im Weltraum eine Herausforderung
20.03.2019 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht Kartographie eines fernen Sterns
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungsnachrichten

Mit dem Forschungsflugzeug ins ewige Eis - Meteorologen starten Messkampagne

20.03.2019 | Geowissenschaften

Optischer Sensor soll Pflanzenzüchtung beschleunigen

20.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics