Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Terahertz-Quelle: kompakt und kostensparend

24.05.2016

Neue Möglichkeiten für Scanner und Qualitätskontrolle

Terahertz-Wellen bieten zahlreiche Anwendungsmöglichkeiten, zum Beispiel in Körperscannern, sie sind bisher jedoch schwierig und nur eingeschränkt zu erzeugen. Jülicher Wissenschaftler haben mit internationalen Partnern ein neuartiges Konzept zur Herstellung dieser elektromagnetischen Strahlung realisiert.


Prinzip der neuartigen Terahertz-Quelle: Ein extrem kurzer Laserimpuls lässt energiereiche Elektronen aus dem Magneten in den Nichtmagneten fließen. Entscheidend ist, dass es zwei Sorten von Elektronen gibt, die sich durch ihren Spin (dicke rote Pfeile) und ihre Anzahl unterscheiden. Im Nichtmagneten erfahren diese Elektronen eine Ablenkung ?, die von der Richtung des Elektronenspins abhängt. Der daraus resultierende kurze Stromfluss entlang des blauen Pfeiles erzeugt einen Terahertz-Impuls.

Copyright: Fritz-Haber-Institut


Foto des Prototyps

Copyright: Fritz-Haber-Institut

Ihr Emitter in Form einer dünnen Metallschicht kann das gesamte Terahertz-Spektrum erzeugen. Möglich macht dies die geschickte Nutzung der Spineigenschaft von Elektronen. Auf Basis dieses Prinzips lassen sich effizientere Quellen bauen, die erstmals lückenlos über die große Bandbreite von 1 bis 30 THz abstrahlen. Der neue Emitter ist zudem kompakter und kostengünstiger herstellbar. (Nature Photonics, DOI: 10.1038/nphoton.2016.91).

Terahertz-Wellen liegen im elektromagnetischen Spektrum zwischen den Mikrowellen und dem infraroten Licht im Frequenzbereich von etwa 1 bis 30 THz. Die Strahlung ist äußerst nützlich, denn sie durchdringt viele Materialien, darunter Textilien und Kunststoffe, und wird von anderen Substanzen auf charakteristische Weise absorbiert. Anders als etwa Röntgenstrahlen sind Terahertz-Strahlen gesundheitlich unbedenklich. Sie finden deshalb zum Beispiel in Körperscannern an Flughäfen Verwendung oder werden zur Qualitätskontrolle von Nahrungsmitteln genutzt.

Ein Hindernis für eine breitere Nutzung ist, dass Apparate, mit denen sich das gesamte Terahertz-Spektrum lückenlos erzeugen lässt, teuer und groß sind. Wissenschaftler des Forschungszentrums Jülich und Partner aus Deutschland, den USA, Schweden und Frankreich haben nun einen Terahertz-Emitter realisiert, der skalierbar ist und sich für Tischgeräte eignet.

"Unser Prototyp erzeugt das gesamte Terahertz-Spektrum von 1 bis 30 THz und ist dabei energieeffizienter, einfacher zu bedienen und günstiger in der Herstellung als bisherige Quellen", freut sich Prof. Dr. Yuriy Mokrousov, Leiter der Helmholtz-Nachwuchsgruppe für Topologische Nanoelektronik am Forschungszentrum Jülich. "Wir erwarten einen raschen und breiten Einsatz."

Die neuartige Quelle nutzt einen Femtosekundenlaser, der 80 Millionen ultrakurze Lichtblitze pro Sekunde erzeugt. Herkömmliche Apparate benötigen deutlich leistungsstärkere Laser, die viel teurer, aufwendiger und größer sind und mehr Energie verbrauchen.

Der neuartige Emitter hat Ähnlichkeit mit einer Photodiode oder auch Solarzelle: Die Beleuchtung des Materials mit einem ultrakurzen Laserblitz erzeugt einen Stromstoß, der dann einer Sendeantenne gleich einen elektromagnetischen Impuls abstrahlt. Der neuartige Emitter besteht im Gegensatz zu Solarzellen aus einem nur 5,8 Nanometer dünnen Metallfilm, so dass der Stromstoß extrem kurz ist und die Terahertz-Strahlung im Emittermaterial kaum abgeschwächt wird (s. Grafik für weitere Erläuterungen).

Nachdem die Forscher die verwendeten Metalle und Schichtdicken systematisch optimierten, reicht nun relativ schwache Laserstrahlung zur Erzeugung des gesamten Terahertz-Spektrums von 1 bis 30 THz aus.

Mokrousovs Kollege Dr. Frank Freimuth erklärt eine weitere wichtige Zutat der neuen Terahertz-Quelle: "Der Emitter funktioniert so gut, weil wir zusätzlich zur Ladung der Elektronen auch ihren Spin nutzen." Der Spin ist eine magnetische Eigenschaft der Elektronen und dafür verantwortlich, dass sich Strom in magnetischen Metallen anders verhält als in nichtmagnetischen. Dieser Effekt wird in der neuen Quelle geschickt ausgenutzt, um den Elektronentransport so zu steuern, so dass die Terahertz-Welle besonders gut abgestrahlt werden kann. Mit einem in Jülich entwickelten Rechencode halfen die beiden Physiker, geeignete Materialien auszuwählen und die experimentellen Ergebnisse zu verstehen.

Originalveröffentlichung:

Efficient metallic spintronic emitters of ultrabroadband terahertz radiation;
T. Seifert et al.;
Nature Photonics, DOI: 10.1038/nphoton.2016.91

Weitere Informationen:

Institutsbereich "Quanten-Theorie der Materialien" (PGI-1/IAS-1)

Ansprechpartner:

Prof. Dr. Yuriy Mokrousov, Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich, Tel. 02461 61-4434, E-Mail: y.mokrousov@fz-juelich.de

Dr. Frank Freimuth, Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich, Tel. 02461 61-1608, E-Mail: f.freimuth@fz-juelich.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik, | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics