Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Quantenkontrolle über ein Drei-Zustands-Spin-System

08.08.2018

Wissenschaftler konnten erstmals die Quanteninterferenzen in einem quantenmechanischen Drei-Zustands-System untersuchen und damit das Verhalten einzelner Elektronenspins steuern. Sie verwendeten dafür eine neuartige Nanostruktur, bei der ein Quantensystem in einen nanoskaligen, mechanischen Schwingbalken integriert ist. «Nature Physics» hat die Studie von Wissenschaftlern der Universität Basel und des Swiss Nanoscience Institute veröffentlicht.

Der Elektronenspin ist eine fundamentale quantenmechanische Eigenschaft, die jedem Elektron innewohnt. In der Quantenmechanik beschreibt der Elektronenspin die Drehrichtung des Elektrons um die eigene Achse und kann deswegen zwei Zustände annehmen, die gemeinhin als «up» und «down» bezeichnet werden. Die Quanteneigenschaften dieser Spins bieten interessante Perspektiven für zukünftige Technologien, zum Beispiel in Form von hochpräzisen Quantensensoren.


Der schwingende Federbalken beeinflusst den Spin der Elektronen in den Stickstoffvakanzzentren (rote Pfeile). Dabei bestimmt die Phase des Oszillators, in welcher Drehrichtung der Spin rotiert.

Bild: Universität Basel / Swiss Nanoscience Institute

Kontrolle von drei Quantenzuständen

Die Wissenschaftler um Professor Patrick Maletinsky und den Doktoranden Arne Barfuss vom Swiss Nanoscience Institute an der Universität Basel berichten in «Nature Physics» von einer neuen Methode, mit dem sich erstmals die Quantenzustände von Elektronenspins durch ein mechanisches System auf eine neuartige Weise kontrollieren lassen.

Für ihre experimentelle Studie kombinierten sie ein solches Quantensystem mit einem mechanischen Oszillator. Konkret betteten die Forscher Elektronenspins in sogenannte Stickstoffvakanzzentren in winzige mechanischen Resonatoren aus einkristallinen Diamanten ein, die sich in Schwingung versetzen lassen.

Quantenverhalten steuern

Die Spins der Elektronen in den Stickstoffvakanzzentren zeichnen sich dabei durch eine besondere Eigenschaft aus: Ihr Gesamptspin besitzt nicht nur zwei, sondern drei Basiszustände, die man mit «up», «down» und «zero» bezeichnen kann. Durch die Kopplung des mechanischen Oszillators an den Spin erreichten sie erstmals eine vollständige Quantenkontrolle über ein solches dreistufiges System, wie sie bisher nicht möglich war.

Der Oszillator ermöglichte es den Forschern insbesondere, erstmals alle drei möglichen Übergänge zwischen den Spinzuständen gezielt anzusteuern und zu untersuchen, wie sich die Zustandsänderungen gegenseitig beeinflussen.

Dieses als «Closed Contour Driving» bezeichnete Szenario wurde bisher noch nie untersucht, eröffnet aber interessante fundamentale und praktische Perspektiven. Das Experiment erlaubte zum Beispiel ein Brechen der Zeitumkehrsymmetrie, was bedeutet, dass die Eigenschaften des Systems in zeitlich umgekehrter Richtung prinzipiell anders ausschauen als ohne Zeitumkehr. Dabei bestimmte die Phase des mechanischen Oszillators, ob der Spin im «Uhrzeigersinn» (Drehrichtung up, down, zero, up) oder gegen den Uhrzeigersinn kreiste.

Verlängerung der Kohärenz

Dieses abstrakte Konzept hat praktische Konsequenzen für die fragilen Quantenzustände. Ähnlich wie Schrödingers Katze können sich Spins nämlich für einen bestimmten Zeitraum – der sogenannten Kohärenzzeit – gleichzeitig in einer Überlagerung von zwei oder drei der genannten Basiszustände befinden.

Werden die drei Spinzustände in der hier entdeckten Weise in einem geschlossenen Kreis zueinander gekoppelt, verlängert sich die Kohärenzzeit deutlich, wie die Forscher zeigen konnten. Im Vergleich zu Systemen, bei denen nur zwei der drei möglichen Übergänge vorhanden sind, nahm sie fast um das Hundertfache zu.

Der Erhalt der Kohärenz bildet ein Schlüsselelement für zukünftige Quantentechnologien und ein weiteres Hauptergebnis dieser Arbeit.

Praktischer Nutzen für Sensorik

Die hier beschriebene Arbeit birgt hohes Potenzial für zukünftige Anwendungen. Denkbar ist, dass das hybride Resonator-Spin-System zur präzisen Erfassung zeitabhängiger Signale mit Frequenzen im Gigahertz-Bereich verwendet werden kann – zum Beispiel für Präzisionsmessungen und die Quanteninformationsverarbeitung. Diese Aufgaben sind für nanomechanische Oszillatoren bisher nicht einfach zu lösen. Hier könnte die Kopplung von Spin und einem schwingenden System gerade auch wegen dem demonstrierten Erhalt der Spinkohärenz Abhilfe schaffen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Patrick Maletinsky, Universität Basel, Departement Physik / Swiss Nanoscience Institute, Tel. +41 61 207 37 63, E-Mail: patrick.maletinsky@unibas.ch

Originalpublikation:

Arne Barfuss, Johannes Kölbl, Lucas Thiel, Jean Teissier, Mark Kasperczyk, and Patrick Maletinsky
Phase-controlled coherent dynamics of a single spin under closed-contour interaction
Nature Physics (2018), doi: 10.1038/s41567-018-0231-8

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

nachricht Die Zähmung der Lichtschraube
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics