Neuartige Laser-Impulse eröffnen bislang unbekannte Wege bei Bearbeitung von Nano-Strukturen

Abbildung der anfänglich sehr kurzen Laserimpulse, die in zeitliche Airy-Impulse umgeformt und dann auf eine Quarzglasprobe fokussiert werden. Auf der rechten Seite unten ist ein Querschnitt eines tiefen Nanolochs zu sehen, das mit einem einzigen Laserschuss erzeugt wurde. Grafik: Uni Kassel.

Die Nanotechnologie eröffnet bei der Entwicklung von Elektronik, optischen Kommunikationsmitteln und der Biomedizin völlig neue Möglichkeiten. Dabei geht es um die Prägung von Strukturen, die kleiner als ein Mikrometer sind – was wiederum weniger als ein Hundertstel des Durchmessers eines Haares darstellt. Diese sogenannten Nanostrukturen verleihen Materialien Eigenschaften, die diese in einem größeren Maßstab nicht besitzen. Die Herstellung solcher Strukturen ist aber noch eine He-rausforderung, auch wenn es eine Reihe verschiedener Techniken dafür gibt.

Ein gängiger Weg, um Strukturen in ein Substrat zu schreiben, ist es, unerwünschtes Material mit Hilfe eines hochintensiven Lasers zu verdampfen. Allerdings gibt es bei diesem Verfahren bedeutende Einschränkungen. Zum einen interagieren diese Laser mit der Oberfläche der meisten Materialen. Noch wichtiger: Die Wellenlänge des Lasers gibt den minimalen Brennpunkt und damit die Größe der geprägten Strukturen vor. Für sichtbares Licht liegt diese Wellenlänge bei 400 bis 800 Nanometern – Größer als einige heute übliche Computer-Komponenten.

Physikern und Nanostrukturwissenschaftlern des Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) der Universität Kassel ist es nun gelungen, Nano-Löcher in Quarzglas zu bohren, die kleiner als der Brennpunkt des verwendeten Lasers sind. Die Löcher haben einen Durchmesser von weniger als 250 Nanometer bei einer Wellenlänge von 800 Nanometern. Dabei weisen diese Löcher eine Tiefe von bis zu sieben Mikrometern auf – ein Größenverhältnis, das bei derart kleinen Strukturen auf anderem Wege kaum zu erreichen ist. „Noch nie wurden auf diese Art Löcher gebohrt, die so klein und gleichzeitig so tief sind“, freut sich Doktorandin Nadine Götte, die bei der Durchführung der Experimente federführend war. Die Forschungsergebnisse wurden jetzt mit Unterstützung des Open-Access-Publikationsfonds der Kasseler Universitätsbibliothek im renommierten Fachjournal Optica veröffentlicht.

Die Forschungsgruppe um Prof. Dr. Thomas Baumert (Leiter des Fachgebiets Experimentalphysik III – Femtosekundenspektroskopie und ultraschnelle Laserkontrolle) und Prof. Dr. Hartmut Hillmer (Leiter des Fachgebiets Technische Elektronik) benutzte Laserimpulse, die etwa eine Billionstel Sekunde lang sind. Das alleine reichte aber noch nicht aus: Mit einer selbstentwickelten Technik modellierten sie den Laserimpuls und produzierten sogenannten „zeitliche Airy-Impulse“. Einfach gesagt wird dabei nicht der kürzeste mögliche Impuls produziert, sondern einer, der eine optimale Zeitstruktur hat, um möglichst viel Energie in das Material einzubringen. Dieser Mechanismus umgeht auch das Problem, das die meisten Impulse schon an der Oberfläche des Materials absorbiert werden. Stattdessen entstehen durch gezielte Stimulation des Materials tiefe und schmale Kanäle.

Die Kasseler Wissenschaftler wollen ihre Erkenntnisse nun in Anwendungen erproben. So wollen sie testen, ob sich damit winzige Filter für die optische Datenübertragung herstellen lassen. Andere Anwendungen könnten das gezielte Durchlöchern von Zellmembranen oder die Nano-Chirurgie sein.

Originalveröffentlichung:
Götte et al Optica (2016) http://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-4-389

Kontakt:
Prof. Dr. Thomas Baumert
Universität Kassel
Tel. +49-561-804-4452
E-Mail: baumert@physik.uni-kassel.de

Prof. Dr. Hartmut Hillmer
Institut für Nanostruktur und Analyse
Universität Kassel
Tel. +49-561-804-4485
E-Mail: hillmer@ina.uni-kassel.de

http://www.uni-kassel.de

Media Contact

Sebastian Mense idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer