Nanomagnete im Gleichschritt – Moleküle als Bausteine für Quantencomputer?

Struktur des verwendeten Moleküls mit der Spinrichtung der vier Eisenatome. Durch einen Mikrowellenpuls werden die Spins um bestimmte Winkel gekippt. Quelle: 1. Physikalisches Institut, Universität Stuttgart<br>

Mit diesen Algorithmen ist es möglich, spezielle Probleme anzupacken, die mit klassischen Computern unlösbar sind. An der Verwirklichung eines solchen Quantencomputers wird auf den verschiedensten Wegen weltweit intensiv gearbeitet. Ein viel versprechender Ansatz verwendet als kleinste Bauteilchen molekulare Nanomagnete. Wissenschaftlern vom 1. Physikalischen Institut der Universität Stuttgart ist es nun zum ersten Mal gelungen, an Molekülen mit großem Spin (einer Art Kreisel) nachzuweisen, dass die Moleküle für Sekundenbruchteile im Gleichschritt laufen*). Diese als Quantenkohärenz bezeichnete Eigenschaft könnte der Startschuss sein, um den Quantencomputer schnell zu realisieren.

Eine der größten Herausforderungen beim Bau eines Quantencomputers ist das Material, aus dem die Bits gemacht werden. Denn die quantenmechanischen Zustände, die während des Rechenvorgangs verwendet werden, müssen lange genug stabil sein. Sonst geht die Information verloren, bevor die Berechnung abgeschlossen ist – wie bei einem Rechenbrett aus Eiswürfeln, die unter den Fingern schmelzen. Solche stabilen Zustände können beispielsweise mit Hilfe von Elektronen realisiert werden, denn diese kleinen Teilchen besitzen die quantenmechanische Eigenschaft des 'Spins'. Ein wirklicher Computer kann jedoch nicht aus einzelnen Elektronen bestehen. Andererseits sind in realen Materialien die Quanteneigenschaften nur sehr schwer zu beobachten.

Das von der Stuttgarter Forschergruppe verwendete Material ist ein so genannter Einzelmolekülmagnet. Das Einzigartige an diesen komplexen, aber trotzdem kleinen und reproduzierbar herstellbaren Teilchen besteht darin, dass jedes Molekül für sich bereits magnetische Eigenschaften besitzt. Diese erhält es durch magnetische Ionen, welche an festen Plätzen im Molekül sitzen. Die Elektronen der einzelnen Ionen stehen untereinander in Wechselwirkung; wodurch sich bei niedrigen Temperaturen ein Zustand mit einem stabilen Spin einstellt. Für ihre Experimente verwendeten die Physiker ein neuartiges Molekül mit vier Eisenionen. Ihr stabiler Spin ist zehnmal größer als der eines Elektrons und kann verschiedene Zustände mit unterschiedlicher Energie einnehmen.

Die Moleküle wurden mit extrem kurzen Mikrowellenpulsen beschossen. Wie bei einem Gewehrschuss in den Bergen ist dabei ein Echo zu hören, aus dessen Stärke man darauf schließen kann, wie sich die Spins in der Zwischenzeit verhalten haben. Bei diesen Versuchen wurde deutlich, dass die Spins in den Molekülen für Sekundenbruchteile im Gleichschritt laufen. Diese als Kohärenz bezeichnete Eigenschaft ist vergleichbar mit dem Verhalten des Laserlichts, das diesem seine besonderen Eigenschaften verleiht. Zusätzlich wurden sogenannte Rabi-Oszillationen gemessen: Anschaulich gesprochen wurden die Spins der Moleküle dabei gleichzeitig um bestimmte Winkel gedreht. Es war sogar möglich, mehrere vollständige Rotationen durchzuführen, was man bislang für unmöglich hielt.

Bevor ein wirklicher Quantencomputer mit molekularen Magneten gebaut werden kann, müssen allerdings noch weitere Hürden genommen werden. Zuerst müssen die Moleküle auf einer Oberfläche angeordnet werden. Dann müssen sie einzeln adressiert, programmiert und ausgelesen werden. Prinzipiell ist dies möglich, bisher benötigt man aber noch eine große Anzahl von Molekülen, um das Mikrowellenecho 'hören' zu können.

*) Veröffentlichung: Christoph Schlegel, Joris van Slageren, Maria Manoli, Euan
K. Brechin und Martin Dressel: Direct observation of quantum coherence in single-molecule magnets, Physical Review Letters, vol. 101, no. 147203 (3rd October 2008)
Weitere Informationen bei Prof. Dr. Martin Dressel und PD Dr. Joris van Slageren, 1. Physikalisches Institut, Tel. 0711/685-64947, e-mail:

dressel@pi1.physik.uni-stuttgart.de, slageren@pi1.physik.uni-stuttgart.de

Media Contact

Ursula Zitzler idw

Weitere Informationen:

http://www.uni-stuttgart.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer