Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Hillocks: Wenn statt Löchern Berge wachsen

18.09.2012
Elektrisch geladene Teilchen dienen als Werkzeug für die Nanotechnologie. Die TU Wien und das Helmholtz-Zentrum Dresden-Rossendorf konnten nun wichtige Fragen über die Wirkung von Ionen auf Oberflächen klären.
Ionenstrahlen werden schon lange eingesetzt um Oberflächen zu manipulieren. An der TU Wien werden Ionen mit so hoher Energie untersucht, dass bereits ein einziges der Teilchen drastische Veränderungen auf der damit beschossenen Oberfläche hervorruft. Nach aufwändigen Forschungen konnte nun erklärt werden, warum sich dabei manchmal Einschusskrater, in anderen Fällen hingegen Erhebungen bilden. Die Untersuchungen wurden kürzlich im Fachjournal „Physical Review Letters“ publiziert.

Ladung statt Wucht

„Will man möglichst viel Energie auf einem kleinen Punkt der Oberfläche einbringen, bringt es wenig, die Oberfläche einfach mit besonders schnellen Atomen zu beschießen“, erklärt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien. „Schnelle Teilchen dringen tief in das Material ein und verteilen ihre Energie daher über einen weiten Bereich.“
Wenn man den einzelnen Atomen allerdings zuerst viele Elektronen entreißt und die hochgeladenen Teilchen dann mit der Materialoberfläche kollidieren lässt, sind die Auswirkungen dramatisch: Die Energie, die man vorher aufwenden musste um die Atome zu ionisieren wird dann in einer Region von wenigen Nanometern Durchmesser freigesetzt.

Das kann bewirken, dass ein winziger Bereich des Materials schmilzt, seine geordnete atomare Struktur verliert und sich ausdehnt. Das Resultat sind sogenannte Nano-Hillocks, kleine Hügel auf der Materialoberfläche. Die hohe elektrische Ladung, die in Form des Ions in das Material eingebracht wird, hat einen starken Einfluss auf die Elektronen des Materials. Das führt dazu, dass sich die Atome aus ihren Plätzen lösen. Reicht die Energie nicht aus um das Material lokal zum Schmelzen zu bringen, können zwar keine Nano-Hillocks, aber kleine Löcher in der Oberfläche entstehen.

Um so ein detailliertes Bild von den Vorgängen an der Materialoberfläche zu bekommen, waren nicht nur aufwändige Experimente sondern auch Computersimulationen und theoretische Arbeit nötig. Friedrich Aumayr und sein Dissertant Robert Ritter arbeiteten daher eng mit Prof. Joachim Burgdörfer, Christoph Lemell und Georg Wachter vom Institut für Theoretische Physik der TU Wien zusammen. Die Experimente wurden in Kooperation mit dem Helmholtz-Zentrum Dresden-Rossendorf durchgeführt.

Potentielle und Kinetische Energie

„Wir haben zwei verschiedene Formen von Energie zur Verfügung“, erklärt Friedrich Aumayr: „Einerseits die potentielle Energie der Ionen, die sie aufgrund ihrer elektrischen Ladung besitzen, andererseits die Bewegungsenergie, die sie aufgrund ihrer Geschwindigkeit haben.“ Abhängig von diesen beiden Energie-Größen hinterlassen die Ionen unterschiedliche Spuren auf der Oberfläche.

Lange Zeit schien die Vorstellung, die man von diesen Prozessen hatte allerdings nicht so recht mit den Messungen übereinzustimmen. Verschiedene Materialien schienen sich unter Ionenbeschuss ganz unterschiedlich zu verhalten, manchmal war überhaupt keine Veränderung der Oberfläche zu sehen, auch wenn man eigentlich deutliche Löcher erwartet hätte.

Säure macht Oberflächen-Verletzungen sichtbar
„Das Rätsel konnte allerdings gelöst werden, in dem wir die Oberflächen kurz mit Säure behandelten“, sagt Friedrich Aumayr. „Dabei zeigte sich, dass manche Oberflächen durch den Ionenbeschuss zwar verändert worden waren, die Atome hatten sich aber noch nicht völlig von der Oberfläche gelöst. Die mit einem Atomkraftmikroskop erstellten Bilder zeigten daher keine Veränderung.“ Durch Säurebehandlung wurden genau diese getroffenen Stellen allerdings viel stärker angegriffen als die feste, unverletzte Struktur – die Löcher wurden sichtbar.

Vermutung bestätigt

„Für uns war das der letzte große Puzzlestein für das Verständnis der Wechselwirkung zwischen den Ionen und der Oberfläche“, sagt Aumayr. „Durch die Untersuchung mit Hilfe der Säure können wir nun viel besser nachweisen, bei welchen Energien die Oberfläche wie stark verändert wird – damit ergibt sich für uns nun endlich ein geschlossenes Bild.“ Das Entstehen der Hillocks hängt stark vom Ladungszustand, aber kaum von der Geschwindigkeit der Ionen-Geschoße ab. Das Auftreten von Löchern hingegen wird maßgeblich durch die Bewegungsenergie der Ionen bestimmt. „Vermutet hatten wir das schon lange. Meine Studenten haben mir sogar vor drei Jahren schon eine Geburtstagstorte geschenkt, die genau diesen Zusammenhang darstellte – in Schokolade und Zuckerguss“, verrät Aumayr. Damals war das noch Spekulation – doch nun, nach aufwändigen Messungen, wurde ein beinahe identisches Diagramm im Fachjournal „Physical Review Letters“ publiziert.

Publikation: A.S. El-Said, R.A. Wilhelm, R. Heller, S. Facsko, C. Lemell, G. Wachter, J. Burgdörfer, R. Ritter, F. Aumayr Phase diagram for nanostructuring CaF2 surfaces by slow highly charged ions Physical Review Letters 109 (2012) 117602 (5 pages): http://link.aps.org/doi/10.1103/PhysRevLett.109.117602
Bilderdownload:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/nano_hillocks/
Rückfragehinweis:
Prof. Friedrich Aumayr
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.109.117602

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics