Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Hillocks: Wenn statt Löchern Berge wachsen

18.09.2012
Elektrisch geladene Teilchen dienen als Werkzeug für die Nanotechnologie. Die TU Wien und das Helmholtz-Zentrum Dresden-Rossendorf konnten nun wichtige Fragen über die Wirkung von Ionen auf Oberflächen klären.
Ionenstrahlen werden schon lange eingesetzt um Oberflächen zu manipulieren. An der TU Wien werden Ionen mit so hoher Energie untersucht, dass bereits ein einziges der Teilchen drastische Veränderungen auf der damit beschossenen Oberfläche hervorruft. Nach aufwändigen Forschungen konnte nun erklärt werden, warum sich dabei manchmal Einschusskrater, in anderen Fällen hingegen Erhebungen bilden. Die Untersuchungen wurden kürzlich im Fachjournal „Physical Review Letters“ publiziert.

Ladung statt Wucht

„Will man möglichst viel Energie auf einem kleinen Punkt der Oberfläche einbringen, bringt es wenig, die Oberfläche einfach mit besonders schnellen Atomen zu beschießen“, erklärt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien. „Schnelle Teilchen dringen tief in das Material ein und verteilen ihre Energie daher über einen weiten Bereich.“
Wenn man den einzelnen Atomen allerdings zuerst viele Elektronen entreißt und die hochgeladenen Teilchen dann mit der Materialoberfläche kollidieren lässt, sind die Auswirkungen dramatisch: Die Energie, die man vorher aufwenden musste um die Atome zu ionisieren wird dann in einer Region von wenigen Nanometern Durchmesser freigesetzt.

Das kann bewirken, dass ein winziger Bereich des Materials schmilzt, seine geordnete atomare Struktur verliert und sich ausdehnt. Das Resultat sind sogenannte Nano-Hillocks, kleine Hügel auf der Materialoberfläche. Die hohe elektrische Ladung, die in Form des Ions in das Material eingebracht wird, hat einen starken Einfluss auf die Elektronen des Materials. Das führt dazu, dass sich die Atome aus ihren Plätzen lösen. Reicht die Energie nicht aus um das Material lokal zum Schmelzen zu bringen, können zwar keine Nano-Hillocks, aber kleine Löcher in der Oberfläche entstehen.

Um so ein detailliertes Bild von den Vorgängen an der Materialoberfläche zu bekommen, waren nicht nur aufwändige Experimente sondern auch Computersimulationen und theoretische Arbeit nötig. Friedrich Aumayr und sein Dissertant Robert Ritter arbeiteten daher eng mit Prof. Joachim Burgdörfer, Christoph Lemell und Georg Wachter vom Institut für Theoretische Physik der TU Wien zusammen. Die Experimente wurden in Kooperation mit dem Helmholtz-Zentrum Dresden-Rossendorf durchgeführt.

Potentielle und Kinetische Energie

„Wir haben zwei verschiedene Formen von Energie zur Verfügung“, erklärt Friedrich Aumayr: „Einerseits die potentielle Energie der Ionen, die sie aufgrund ihrer elektrischen Ladung besitzen, andererseits die Bewegungsenergie, die sie aufgrund ihrer Geschwindigkeit haben.“ Abhängig von diesen beiden Energie-Größen hinterlassen die Ionen unterschiedliche Spuren auf der Oberfläche.

Lange Zeit schien die Vorstellung, die man von diesen Prozessen hatte allerdings nicht so recht mit den Messungen übereinzustimmen. Verschiedene Materialien schienen sich unter Ionenbeschuss ganz unterschiedlich zu verhalten, manchmal war überhaupt keine Veränderung der Oberfläche zu sehen, auch wenn man eigentlich deutliche Löcher erwartet hätte.

Säure macht Oberflächen-Verletzungen sichtbar
„Das Rätsel konnte allerdings gelöst werden, in dem wir die Oberflächen kurz mit Säure behandelten“, sagt Friedrich Aumayr. „Dabei zeigte sich, dass manche Oberflächen durch den Ionenbeschuss zwar verändert worden waren, die Atome hatten sich aber noch nicht völlig von der Oberfläche gelöst. Die mit einem Atomkraftmikroskop erstellten Bilder zeigten daher keine Veränderung.“ Durch Säurebehandlung wurden genau diese getroffenen Stellen allerdings viel stärker angegriffen als die feste, unverletzte Struktur – die Löcher wurden sichtbar.

Vermutung bestätigt

„Für uns war das der letzte große Puzzlestein für das Verständnis der Wechselwirkung zwischen den Ionen und der Oberfläche“, sagt Aumayr. „Durch die Untersuchung mit Hilfe der Säure können wir nun viel besser nachweisen, bei welchen Energien die Oberfläche wie stark verändert wird – damit ergibt sich für uns nun endlich ein geschlossenes Bild.“ Das Entstehen der Hillocks hängt stark vom Ladungszustand, aber kaum von der Geschwindigkeit der Ionen-Geschoße ab. Das Auftreten von Löchern hingegen wird maßgeblich durch die Bewegungsenergie der Ionen bestimmt. „Vermutet hatten wir das schon lange. Meine Studenten haben mir sogar vor drei Jahren schon eine Geburtstagstorte geschenkt, die genau diesen Zusammenhang darstellte – in Schokolade und Zuckerguss“, verrät Aumayr. Damals war das noch Spekulation – doch nun, nach aufwändigen Messungen, wurde ein beinahe identisches Diagramm im Fachjournal „Physical Review Letters“ publiziert.

Publikation: A.S. El-Said, R.A. Wilhelm, R. Heller, S. Facsko, C. Lemell, G. Wachter, J. Burgdörfer, R. Ritter, F. Aumayr Phase diagram for nanostructuring CaF2 surfaces by slow highly charged ions Physical Review Letters 109 (2012) 117602 (5 pages): http://link.aps.org/doi/10.1103/PhysRevLett.109.117602
Bilderdownload:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/nano_hillocks/
Rückfragehinweis:
Prof. Friedrich Aumayr
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.109.117602

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Starke Magnetfelder mit Neutronen sichtbar machen
22.08.2019 | Paul Scherrer Institut (PSI)

nachricht Die verschränkte Zeit der Quantengravitation
22.08.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Die verschränkte Zeit der Quantengravitation

Die Theorien der Quantenmechanik und der Gravitation sind dafür bekannt, trotz der Bemühungen unzähliger PhysikerInnen in den letzten 50 Jahren, miteinander inkompatibel zu sein. Vor kurzem ist es jedoch einem internationalen Forschungsteam von PhysikerInnen der Universität Wien, der Österreichischen Akademie der Wissenschaften sowie der Universität Queensland (AUS) und dem Stevens Institute of Technology (USA) gelungen, wichtige Bestandteile der beiden Theorien, die den Verlauf der Zeit beschreiben, zu verbinden. Sie fanden heraus, dass die zeitliche Abfolge von Ereignissen echte Quanteneigenschaften aufweisen kann.

Der allgemeinen Relativitätstheorie zufolge verlangsamt die Anwesenheit eines schweren Körpers die Zeit. Das bedeutet, dass eine Uhr in der Nähe eines schweren...

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

GAIN 2019: Das größte Netzwerktreffen deutscher Wissenschaftlerinnen und Wissenschaftler startet in den USA

22.08.2019 | Veranstaltungen

Künstliche Intelligenz auf der MS Wissenschaft

22.08.2019 | Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Evolution des Sehvermögens auf der Spur

22.08.2019 | Biowissenschaften Chemie

Erstmals entschlüsselt: Wie Licht 
chemische Reaktionen in Gang hält

22.08.2019 | Biowissenschaften Chemie

Starke Magnetfelder mit Neutronen sichtbar machen

22.08.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics