MOSHEMT – neuartige Transistor-Technologie erreicht Rekordfrequenzen

94 GHz-Modul mit MOSHEMT-Transistoren für die E-Band-Satellitenkommunikation. Fraunhofer IAF

In den letzten Jahren wurden die Hochfrequenzeigenschaften von High-Electron-Mobility-Transistoren (HEMTs) kontinuierlich verbessert. Die Transistoren wurden immer schneller, indem die Gatelänge auf bis zu 20 nm herunterskaliert wurde.

Allerdings stößt der HEMT bei diesen kleinen Strukturgrößen auf ein Problem: Je dünner das Barrierenmaterial aus InAlAs (Indium-Aluminiumarsenid) wird, desto mehr Elektronen fließen vom ladungsführenden Kanal durch das Gate ab.

Diese unerwünschten Gate-Leckströme wirken sich negativ auf die Leistungsfähigkeit und die Lebensdauer des Transistors aus – weitere Transistorskalierungen werden dadurch unmöglich. Der klassische HEMT ist bei dieser Transistorgeometrie an seinem Skalierungslimit angelangt.

Auch Silizium-MOSFETs (Metall-Oxid-Halbleiter-Feldeffekttransistoren) kennen dieses Problem. Allerdings verfügen sie über eine Oxidschicht, die die ungewollten Leckströme länger unterbinden kann als dies beim HEMT der Fall ist.

Vorteile beider Transistor-Technologien kombinieren

Die Forscher am Fraunhofer IAF haben die Vorteile von III/V-Halbleitern und Si-MOSFETs kombiniert und die Schottky-Barriere des HEMTs durch eine isolierende Oxidschicht ersetzt. Entstanden ist eine neue Art von Transistor: der Metalloxidhalbleiter-HEMT, kurz MOSHEMT.

»Wir haben ein neues Bauelement entwickelt, dass das Potenzial besitzt, weit über das hinaus zu gehen, was bisherige HEMTs leisten können. Der MOSHEMT ermöglicht es uns, ihn noch weiter zu skalieren und damit noch schneller und leistungsfähiger zu machen«, erklärt Dr. Arnulf Leuther, Forscher im Bereich der Hochfrequenzelektronik am Fraunhofer IAF.

Mit der neuen Transistor-Technologie ist es Leuther und seinem Team gelungen, einen Rekord in der maximalen Oszillationsfrequenz von 640 GHz zu erreichen. »Das übertrifft den weltweiten Stand der Technik für jegliche MOSFET-Technologie, einschließlich Silizium-MOSFETs«, fügt er hinzu.

Hohe Barriere gegen Leckströme

Um die zunehmenden Gate-Leckströme zu überwinden, mussten die Forscher ein Material mit deutlich höheren Barrieren als die klassische Schottky-Barriere einsetzen. So haben sie das Halbleiter-Barrierenmaterial durch eine Kombination isolierender Schichten bestehend aus Aluminiumoxid (Al2O3) und Hafniumoxid (HfO2) ersetzt.

»Dadurch konnten wir den Gate-Leckstrom um mehr als den Faktor 1000 reduzieren. Die ersten hergestellten MOSHEMTs demonstrieren ein sehr hohes Entwicklungspotential, während die bestehenden Feldeffekttransistor-Technologien bereits ihr Limit erreicht haben«, berichtet Dr. Axel Tessmann, ebenfalls Forscher am Fraunhofer IAF.

Weltweit erste integrierte Schaltung mit MOSHEMTs

Der ultra-schnelle MOSHEMT ist für den Frequenzbereich oberhalb von 100 GHz ausgelegt und damit für neuartige Kommunikations-, Radar- sowie Sensoranwendungen von besonderem Interesse. Hochleistungsfähige Bauelemente sollen in Zukunft für eine schnellere Datenübertragung zwischen Funkmasten sorgen, abbildende Radarsysteme für das autonome Fahren sowie eine höhere Auflösung und Genauigkeit von Sensoren ermöglichen.

Doch bis der MOSHEMT den Weg in die Anwendung findet, wird es noch einige Jahre dauern. Die Forscher am Fraunhofer IAF sind jedoch bereits einen Schritt weiter: Es ist ihnen gelungen, den weltweit ersten Verstärker-MMIC (Monolithic Microwave Integrated Circuit) auf Basis von InGaAs-MOSHEMTs für den Frequenzbereich zwischen 200 und 300 GHz zu realisieren.

Media Contact

Dr. Anne-Julie Maurer Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Informationen:

http://www.iaf.fraunhofer.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer