Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Maschinen mit Lichtantrieb

23.07.2019

Kieler Forschungsteam baut erste Nanoroboter zur Herstellung von Molekülen

Die Idee molekularer Maschinen wird in den Nanowissenschaften schon lange diskutiert: Künstlich hergestellte chemische Verbindungen, die in der Lage sind, mechanische Arbeit zu verrichten.


Professor Rainer Herges, Sprecher des Sonderforschungsbereichs 677 „Funktion durch Schalten“

© Herges

Solche „Nanoroboter“ könnten zum Beispiel medizinische Wirkstoffe transportieren, defekte Zellen reparieren oder Temperaturen im Körper messen, die auf Entzündungen hindeuten. Ein Forschungsteam aus dem Institut für Organische Chemie der Christian-Albrechts-Universität zu Kiel (CAU) ist es nun gelungen, ein Molekül herzustellen, das selbst Moleküle produzieren kann. Angetrieben wird es dabei durch UV-Licht.

Bei dem verwendeten Prinzip orientierten sich die Chemikerinnen und Chemiker an Syntheseverfahren aus der Natur wie der Herstellung von ATP-Molekülen, dem universellen Energieträger von Zellen. Ihre Ergebnisse stellten sie in dem renommierten Fachmagazin Communications Chemistry vor.

Das Problem der klebrigen Finger

Bereits in den 1980er Jahren schwebte Ingenieur Kim Eric Drexler die Idee molekularer Maschinen als sogenannte „Assembler“ vor (von assemble, engl. für zusammenbauen): Sie sollten in der Lage sein, einzelne Atome zu greifen und präzise zu platzieren, um so komplexe Molekül-Strukturen zu bauen.

Letztendlich würden sie sich selbst reproduzieren können, so Drexler. Diese Vision war der Beginn einer intensiven wissenschaftlichen Kontroverse: Gegner, die den Bau solcher Nanoroboter aus Molekülen prinzipiell nicht für möglich hielten, führten im Wesentlichen zwei Argumente an, die in der Forschung als Probleme der „dicken und klebrigen Finger“ bezeichnet werden.

Demnach müsste ein Assembler unzählige „Finger“ im Nanomaßstab haben, um die verschiedenen Atome jeweils greifen und platzieren zu können – dafür fehle jedoch schlichtweg der Platz. Haupthindernis für solche „Molekülbauer“ sei aber die als „sticky fingers“ (zu Deutsch: „klebrige Finger“) bezeichnete Schwierigkeit, einmal gegriffene Atome wieder loslassen und absetzen zu können. 

Forschungsergebnisse der letzten Jahre lassen jedoch darauf schließen, dass die Entwicklung solcher Assembler prinzipiell möglich ist. Davon ist Rainer Herges, Professor für Organische Chemie und Sprecher des Sonderforschungsbereichs 677 „Funktion durch Schalten“ an der CAU, überzeugt.

„Immerhin existieren solche molekularen Assembler bereits in der Natur, zum Beispiel in Form von Ribosomen, die in Zellen Proteine herstellen oder zur Synthese von ATP, Adenosintriphosphat. Das Prinzip dieser biochemischen Synthesevorgänge müsste sich also künstlich im Labor nachbilden lassen“, beschreibt Herges seinen Ansatz. Auf diese Weise stellten er und sein Forschungsteam den ersten künstlichen Assembler her, der mit UV-Licht betrieben wird.

UV-Licht steuert Prozesse

Dafür reduzierten die Wissenschaftlerinnen und Wissenschaftler die Komplexität der biologischen Prozesse systematisch soweit, dass sie sich mit Methoden der synthetischen Chemie umsetzen ließen. Sie brachten die Reaktionspartner, vier Vanadat-Ionen, in unmittelbare Nähe zueinander und verknüpften sie zu einem Ring.

Über ein per UV-Licht steuerbares Assembler-Molekül lösten sie einen Reaktionsprozess aus, bei dem sich ein neues Molekül formt. Auch das „klebrige-Finger-Problem“ konnten die Wissenschaftlerinnen und Wissenschaftler mit UV-Licht lösen:

Bestrahlt mit Licht mit einer Wellenlänge von 365 Nanometern ändert sich die äußere Form des Assembler-Moleküls. Seine Enden drücken sich wie eine Zange zusammen, der Raum im Inneren wird zu klein und das neue Molekül wird freigegeben.

UV-Licht wählte das Forschungsteam deshalb als externe Energiequelle, weil es einfach zu handhaben ist und – im Gegensatz zu chemischer Energie – keine unbeabsichtigten Nebenprodukte entstehen.    

Paradigmenwechsel in der chemischen Synthese

Ähnliche funktionierende molekulare Maschinen, die zum Beispiel Aminosäuren in Proteine umwandeln könnten, wären mit weniger Nebenprodukten und kürzeren Syntheseprozessen in der Lage, einen Paradigmenwechsel in den Methoden der chemischen Synthese auszulösen, so Herges.

Außerdem betont das Kieler Forschungsteam, dass die Energie des entstandenen Moleküls höher ist als die der Ausgangsstoffe. „Auch wenn ihre Herstellung eine Herausforderung ist, könnten molekulare Assemblers langfristig eine neue Möglichkeit sein, um Lichtenergie in chemische Energie umzuwandeln“, unterstreicht Herges ihre Bedeutung. 

Die Arbeit wurde gefördert von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs SFB 677 „Funktion durch Schalten“.

Originalpublikation:

Hanno Sell, Anika Gehl, Daniel Plaul, Frank D. Sönnichsen, Christian Schütt, Felix Köhler, Kim Steinborn & Rainer Herges: Towards a light driven molecular assembler. Communications Chemistry volume 2, Article number: 62 (2019), https://doi.org/10.1038/s42004-019-0163-y

Bildmaterial steht zum Download bereit:

www.uni-kiel.de/de/pressemitteilungen/2019/235-Herges.jpg

Bildunterschrift: Professor Rainer Herges, Sprecher des Sonderforschungsbereichs 677 „Funktion durch Schalten“

© Herges

Weitere Informationen:

www.sfb677.uni-kiel.de

Kontakt:

Prof. Dr. Rainer Herges

Institut für Organische Chemie

Sprecher Sonderforschungsbereich 677 „Funktion durch Schalten“

Universität Kiel

Tel.: +49 (0)431 880 2440

E-Mail: rherges@oc.uni-kiel.de

Web: www.uni-kiel.de/fakultas/mathnat/chemie/organische/

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel

Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355

E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni

Link zur Meldung: www.uni-kiel.de/de/detailansicht/news/235-assembler/

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Dank Tomographie-Weltrekord kann man mit Synchrotronstrahlung zuschauen, wie Metall aufgeschäumt wird
21.08.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
21.08.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungsnachrichten

Proteinaggregation: Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

21.08.2019 | Biowissenschaften Chemie

Das Schulbuch wird digital

21.08.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics