Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MOF@SAW oder: Nanobeben und molekulare Schwämmchen zum Wiegen und Trennen winzigster Massen

22.07.2019

Augsburger Chemiker und Physiker berichten, wie ihnen die extrem schwierige Trennung von Wasserstoff und Deuterium in einem Gasgemisch gelungen ist.

Dank der hier vor Ort entwickelten und bereits vielfach angewendeten Surface Acoustic Waves-Technologie (SAW) ist die Universität Augsburg international als das Epizentrum für „Nanobeben auf dem Chip“ anerkannt.


Der Augsburger MOF@SAW-Sensor: Die unterschiedlichen Geschwindigkeiten, mit denen die MOF-gefilterte und die ungefilterte Welle an den Chip-Enden ankommen, weisen das Quantensieben in Echtzeit nach.

© Universität Augsburg/IfP

Durch Hochfrequenzsignale induzierte Schallwellen, die sich an der Oberfläche eines Chips ausbreiten und empfindlich auf jegliche Störung auf ihrem Weg reagieren, sind Kern dieser Technologie.

Mit ihr ist es in einer Kooperation zwischen Augsburger Physikern und Chemikern und einem Theorie-Kollegen aus Valencia jetzt gelungen, einen neuartigen Sensor zu entwickeln, der es möglich macht, winzigste Massen und Massenänderungen in Echtzeit nachzuweisen und zur Isotopentrennung zu verwenden.

Forscher an den Augsburger Lehrstühlen für Experimentalphysik I und für Festkörperchemie haben die Nanobeben bzw. die SAW dazu genutzt, ultra-mikroporöse Nanokristallite aus so genannten MOF, das sind metallorganischen Gerüstverbindungen/Metal Organic Frameworks, dann zu wiegen, wenn sie ganz spezifisch mit Gasen beladen werden.

Die Oberflächenwellen registrieren bei ihrem Durchgang durch diese „Nano-Schwämmchen“ in kürzester Zeit nicht nur jegliche Massenveränderung der Kristallite, sondern auch deren Selektivität. Auf diese Weise konnten die Augsburger Wissenschaftler jetzt die schwierige Trennung der Isotope eines Gasgemischs aus Wasserstoff (H₂) und seines natürlichen Isotops Deuterium (D₂, „schwerer Wasserstoff“) erfolgreich realisieren und nachweisen.

Die MOF sieben, die SAW wiegen

Der Atomkern von Deuterium besitzt im Gegensatz zu Wasserstoff ein zusätzliches Neutron, die Masse von D₂ entspricht deshalb etwa der doppelten von H₂, allerdings ohne dass sich dabei die Größe der Atome bzw. Moleküle wesentlich ändern würde.

Begibt man sich in tiefe Temperaturen, in die Welt der Quanten also, so zeigt sich, dass die MOF-Schwämmchen sich ab 64 K bzw. -209°C präferentiell mit D₂ vollsaugen.

Grund dafür ist ein Quanteneffekt, nach dem diese selektive Gastrennung auch benannt ist: Die MOF agieren unter diesen extremen Bedingungen nämlich als so genanntes „Quantensieb“.

Wesentlich für das Quantensieben ist, dass sich das Diffusionsverhalten von Gasen bei sehr tiefen Temperaturen und durch Bewegung in einem regelmäßigen Gitter auf den Kopf stellt: In vollständigem Widerspruch zu unseren Alltagserfahrungen beim Sieben bzw. Filtern verteilen sich die schwereren Teilchen im Quantensieb schneller als die leichteren.

Und diese Veränderung des Diffusionsverhaltens können die SAW auf einem dazu speziell entworfenen Chip nicht nur sehr schnell, sondern auch mit höchster Präzision erfassen.

Die eine Welle ungehindert über die Chipoberfläche, die andere durch den MOF-Filter

Wie die beigefügte Grafik verdeutlicht, werden dazu im Zentrum dieses Chips zwei akustische Wellen (Nanobeben) per Hochfrequenzsignal (≈) durch einen zentralen interdigitalen Transducer generiert. Die eine der beiden Welle wird über einen unbedeckten, nicht 'sensibilisierten' Teil der Chipoberfläche gejagt, die andere durch den selektiven MOF-Quantensieb (graue Fläche in der Grafik).

Beide Wellen breiten sich dabei mit einer extrem hohen Geschwindigkeit von mehreren Kilometern pro Sekunde nach links und rechts zu den beiden Enden des Chips hin aus. Die dünne Schicht aus ultraporösen, metallorganischen Gerüstverbindungen (MOF), durch die die eine Welle hindurch muss, agiert dabei hoch selektiv als Filterschwämmchen für Gase.

Unterhalb einer bestimmten Temperatur entsteht aufgrund der oben beschriebenen Quanteneffekte die Selektivität dieses Filters für die schwerere D₂-Komponente und ermöglicht dadurch deren effektive Trennung von der H₂-Komponente.

Die unterschiedlichen Geschwindigkeiten mit denen die quantengesiebte bzw. gefilterte Welle einerseits und die ungefilterte andererseits an den Enden des Chips ankommen, um dort detektiert und miteinander verglichen (x) werden zu können, weisen das Quantensieben in Echtzeit und mit bislang unerreichter Präzision nach.

Echtzeit-Detektion von Schadstoffen und Umweltgiften

„Beflügelt von diesen hervorragenden Ergebnissen unserer gemeinsamen Experimente, insbesondere davon, dass uns mit ihnen sogar die extrem schwierige Trennung von H₂ und D₂ in einem Gasgemisch gelungen ist, sehen wir jetzt eine Vielzahl neuer und industriell sowie gesellschaftlich relevanter Anwendungen voraus“, sagt Prof. Dr. Dirk Volkmer, der Chemiker im Team.

„Wir werden unsere neuartigen Sensoren nach ihrer Feuertaufe nun für die Echtzeit-Detektion von Schadstoffen und Umweltgiften weiterentwickeln und optimieren." Der Plan ist, die Sensoren mit einer Vielzahl von unterschiedlich synthetisierten und funktionalisierten MOF-Pixeln zu versehen, die mit dem Miniaturerdbeben auf dem Chip dann selektiv gewogen werden können. Volkmer: "Von solch einer präzisen MOF@SAW-Analyse von Atemluft etwa wird dann auch die medizinische Diagnostik profitieren können."

"Überfälliger" Einzug auch in die Chemie

Für Volkmers Physik-Partner, den Nanowissenschaftler und SAW-Pionier Prof. Dr. Achim Wixforth, ist es eine große Genugtuung, "dass unsere Nanoerdbeben über die Nanoelektronik, die Nanomechanik, die Photonik und die Mikrofluidik für medizinische und biophysikalische Fragestellungen hinaus nun endlich auch Einzug in die Chemie gefunden haben – zumal wir kaum zu hoffen gewagt hätten, dass die Kombination MOF@SAW derart gut funktioniert.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dirk Volkmer
dirk.volkmer@physik.uni-augsburg.de
Telefon +49(0)821-598-3006

Prof. Dr. Achim Wixforth
achim.wixforth@physik.uni-augsburg.de
Telefon +49(0)821-598-3300

Originalpublikation:

Die Forschungsergebnisse wurden kürzlich im renommierten Chemie-Fachjournal „Chemistry“ als „Hot Paper“ publiziert: Benjamin Paschke, Dmytro Denysenko,Björn Bredenkötter, German Sastre, Achim Wixforth, Dirk Volkmer: Dynamic Studies on Kinetic H2/D2 Quantum Sieving in a Narrow Pore Metal–Organic Framework Grown on a Sensor Chip, in: Chemistry. A European Journal, 27 June 2019, http://doi.org/10.1002/chem.201900889

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Massereiche Sternembryos wachsen in Schüben
14.07.2020 | Max-Planck-Institut für Astronomie

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wind trägt Mikroplastik in die Arktis

14.07.2020 | Ökologie Umwelt- Naturschutz

Nanoelektronik lernt wie das Gehirn

14.07.2020 | Informationstechnologie

Anwendungslabor Industrie 4.0 der THD: Smarte Lösungen für die Unikatproduktion

14.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics