Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mögliche Erklärung für die Dominanz der Materie über Antimaterie im Universum

04.08.2017

Neutrinos und Antineutrinos – auch Geisterteilchen genannt, weil sie schwierig nachzuweisen sind – können sich ineinander umwandeln. Die internationale T2K Kollaboration fand nun erste Hinweise, dass die Dominanz der Materie über Antimaterie im Universum durch das unterschiedliche Umwandlungs-Verhalten der Neutrinos und Antineutrinos erklärt werden könnte. Dies ist ein wichtiger Meilenstein für das Verständnis des Universums. Ein Team von Teilchenphysikern der Universität Bern hat entscheidende Beiträge zum Experiment geleistet.

Das Universum besteht in erster Linie aus Materie, und der offensichtliche Mangel an Antimaterie ist eine der faszinierendsten Fragen der Wissenschaft. Die T2K-Kollaboration, an der auch die Universität Bern beteiligt ist, hat heute in einem Vortrag am KEK Forschungszentrum in Tsukuba, Japan, verkündet, dass erste Hinweise gefunden wurden, dass mit 95 Prozent Wahrscheinlichkeit die Symmetrie zwischen Materie und Antimaterie (die sogenannte «CP-Symmetrie») für Neutrinos verletzt ist.


Ein Physiker der Universität Bern bei der Installation des Myon Monitors am T2K Experiment.

zvg Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik, Universität Bern


Eine durch das T2K-Experiment beobachtete Elektron-Neutrino-Wechselwirkung.

zvg Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik, Universität Bern

Unterschiedliche Transformation von Neutrinos und Antineutrinos

Neutrinos sind Elementarteilchen, die fast ohne Wechselwirkung durch die Materie reisen. Sie existieren als drei verschiedene Typen: als Elektron-, Myon- und Tau-Neutrinos und als deren jeweilige Antiteilchen (den Antineutrinos). Im Jahr 2013 entdeckte T2K eine neue Art von Transformation unter Neutrinos (Neutrino-Oszillation), bei welcher Myon-Neutrinos in Elektron-Neutrinos umgewandelt werden, während sie sich in Raum und Zeit bewegen.

Die nun präsentierte T2K-Studie lehnt mit 95 Prozent Wahrscheinlichkeit die Hypothese ab, dass die Umwandlung der Anti-Neutrinos (von Myon-Antineutrinos zu Elektron-Antineutrinos) gleich häufig stattfindet. Dies ist der erste Hinweis, dass die Symmetrie zwischen Materie und Antimaterie in der Neutrino-Oszillationen verletzt ist, und deswegen die Neutrinos auch bei der Asymmetrie Materie und Antimaterie im Universum eine Rolle spielen.

«Diese Ergebnisse gehören zu den wichtigsten Erkenntnissen in der Neutrino-Physik in den letzten Jahren. Und sie eröffnen durch den Nachweis dieser winzigen, aber messbaren Wirkung, den Weg zu weiteren spannenden Messungen in den nächsten Jahren», so Prof. Antonio Ereditato, Direktor des Laboratoriums für Hochenergiephysik der Universität Bern und Leiter der Berner T2K-Gruppe.

Ereditato fügt hinzu: «Die Natur scheint anzuzeigen, dass Neutrinos für die beobachtete Vorherrschaft der Materie über Antimaterie im Universum verantwortlich sein können. Was wir gemessen haben, rechtfertigt unsere derzeitigen Bemühungen bei der Vorbereitung des nächsten wissenschaftlichen Unternehmens, DUNE, dem ultimativen Neutrino-Detektor in den USA, der eine endgültige Entdeckung ermöglichen sollte.»

Ein bemerkenswerter Beitrag der Berner Gruppe

Für das T2K-Experiment wird am Proton Accelerator Research Complex (J-PARC) in Tokai an der Ostküste Japans ein Myon-Neutrino-Strahl produziert, die in 295 Kilometer Entfernung vom gigantischen Super-Kamiokande-Untergrund-Detektor gemessen werden.

T2K steht für «Tokai to Kamiokande». Der Neutrino-Strahl muss unmittelbar nach der Produktion vollständig charakterisiert werden, also bevor Neutrinos sich umzuwandeln beginnen. Zu diesem Zweck wurde der ND280-Detektor in der Nähe des Neutrino-Ursprungsorts gebaut und installiert.

Forscher der Universität Bern haben zusammen mit Kollegen aus Genf, der ETH Zürich und anderen internationalen Instituten zum Design, zur Realisierung und zum Betrieb von ND280 beigetragen. Insbesondere kümmerte sich die Gruppe aus Bern um den großen Magneten, der den Detektor umgibt, und sie hat den sogenannten «Myon Monitor» gebaut.

Mit jedem Neutrino entsteht auch ein Myon, von welchen die die Intensität und die Energie gemessen wird. Die Berner Gruppe ist derzeit sehr aktiv bei der Bestimmung der Wahrscheinlichkeit der Wechselwirkung von Neutrinos mit dem ND280-Apparat: ein wichtiger Bestandteil der hochpräzisen Messungen der Neutrino-Umwandlungen.

Kontakt:
Prof. Antonio Ereditato
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik,
Universität Bern
Tel. +41 (0) 31 631 85 66 / antonio.ereditato@lhep.unibe.ch

Prof. Michele Weber
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik
Universität Bern
Tel. +41 (0) 31 631 51 46 / weber@lhep.unibe.ch

Dr. Ciro Pistillo
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik
Universität Bern
Tel. +41 (0) 31 631 40 63 / ciro.pistillo@lhep.unibe.ch

Mitglieder der Berner T2K-Gruppe:
Akitaka Ariga, Roman Berner, Antonio Ereditato, Conor Francois, Patrick Koller, Ciro Pistillo, Asmita Redij, Callum Wilkinson.

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2017/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Accelerator Antimaterie Callum Dominanz Hochenergiephysik Materie Myon Neutrinos Symmetrie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Trennung von Gas und Flüssigkeit – im Weltraum eine Herausforderung
20.03.2019 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht Kartographie eines fernen Sterns
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungsnachrichten

Mit dem Forschungsflugzeug ins ewige Eis - Meteorologen starten Messkampagne

20.03.2019 | Geowissenschaften

Optischer Sensor soll Pflanzenzüchtung beschleunigen

20.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics