Mit Ultraschall in die Quantenwelt

Physiker um Oriol Romero-Isart schlagen vor, Mikropartikel mit Schallwellen zu kühlen. Carlos Sánchez Muñoz

Während sich die Quantenphysik in der Regel mit den grundlegenden Bausteinen von Licht und Materie beschäftigt, versuchen Wissenschaftler seit geraumer Zeit auch die Quanteneigenschaften von größeren Objekten zu untersuchen und damit die Grenze zwischen Quantenwelt und Alltagswelt auszuloten.

Dabei werden die Teilchen mit Hilfe von elektromagnetischen Feldern gebremst und dadurch die Bewegungsenergie sehr stark reduziert. Dieses Abbremsen wird oft auch als Kühlen bezeichnet. Quanteneigenschaften zeigen sich dann, wenn es gelingt, die Teilchen in ihren Grundzustand, auf das geringstmögliche Energieniveau, zu kühlen.

Während bisher die einzige Möglichkeit zur Kühlung in den Grundzustand darin bestand, die Nanoobjekte mit Lichtphotonen in Wechselwirkung zu bringen, die in einem elektromagnetischen Resonator eingeschlossen sind, schlagen die Wissenschaftler um Carlos Gonzalez-Ballestero und Oriol Romero-Isart vom Institut für Theoretische Physik der Universität Innsbruck und vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften in Zusammenarbeit mit dem Experimentalphysiker Jan Gieseler von der Harvard Universität und dem ICFO in Barcelona nun vor, die Bewegung von magnetischen Teilchen mit den internen akustischen Wellen, die im Inneren jedes Teilchens eingeschlossen sind, zur Wechselwirkung zu bringen.

Mikromagnet mit Musik im Bauch

Analog zu den Photonen – den Quanten des Lichts – können Schwingungen in einem Festkörper als sogenannte Phononen oder Schallquanten beschrieben werden. Diese kleinen Schallwellenpakete pflanzen sich durch das Kristallgitter des Festkörpers fort. „Die Schallquanten sind sehr isoliert und wechselwirken mit der Bewegung des Teilchens nur durch magnetische Wellen“, erklärt Carlos Gonzalez-Ballestero.

„Wir zeigen in unseren Arbeiten nun, dass diese Wechselwirkung über ein Magnetfeld kontrolliert werden kann.“ Damit lassen sich erstmals derartige Quantenexperimente auch ohne Photonen realisieren, wodurch nun auch lichtabsorbierende Teilchen gekühlt werden können.

„Umgekehrt zeigen wir zudem, dass die starke Wechselwirkung zwischen der Teilchenbewegung und den Phononen auch die Möglichkeit bietet, Rückschlüsse auf die exotische Dynamik von akustischen und magnetischen Wellen in sehr kleinen Teilchen zu ziehen und diese zu kontrollieren“, ergänzt Oriol Romero-Isart.

Die neue Methode eröffnet auch neue Möglichkeiten für die Quanteninformationsverarbeitung, wobei die Schallquanten in Zukunft als Quantenspeicher Verwendung finden könnten.

Die Innsbrucker Physiker präsentieren ihren neuen Ansatz in zwei Arbeiten in den Fachzeitschriften Physical Review Letters und Physical Review B. Finanziell unterstützt wurden sie von der Europäischen Union.

Carlos Gonzalez-Ballestero
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507 4770
E-Mail: carlos.gonzalez-ballestero@uibk.ac.at

https://link.aps.org/doi/10.1103/PhysRevLett.124.093602 – Quantum Acoustomechanics with a Micromagnet. Carlos Gonzalez-Ballestero, Jan Gieseler, and Oriol Romero-Isart. Phys. Rev. Lett. 124, 093602 [arXiv:1907.04039]

https://link.aps.org/doi/10.1103/PhysRevB.101.125404 – Theory of Quantum Acoustomagnonics and Acoustomechanics with a Micromagnet. Carlos Gonzalez-Ballestero, Daniel Hümmer, Jan Gieseler, and Oriol Romero-Isart. Phys. Rev. B 101, 125404 [arXiv:1912.08745]

https://iqoqi.at/en/group-page-romero-isart – Quantum Nanophysics, Optics and Information

Media Contact

Dr. Christian Flatz Universität Innsbruck

Weitere Informationen:

http://www.uibk.ac.at

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer