Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit ringförmigen Sonden zu besseren Vorhersagen der Polymerdynamik

15.10.2015

Wie beweglich einzelne Polymere sind, verrät viel über ihre makroskopischen Eigenschaften.

Neutronenforscher am Forschungszentrum Jülich haben nun einen Weg gefunden, die oftmals entscheidende seitliche Auslenkung der Moleküle einfacher und genauer als bisher zu untersuchen. Sie nutzen ringförmige Moleküle als Sonden, die sich um die Polymerfäden legen und ihre Seitwärtsbewegungen übernehmen.


In Schmelzen aus Polymerringen (rot) und Polymerfäden (blau) verknäulen sich beide Molekülarten. Jülicher Neutronenforscher fanden heraus, dass sich mit Hilfe der Ringe die Dynamik der Fäden einfacher und genauer messen lässt als mit herkömmlichen Methoden.

Copyright: Forschungszentrum Jülich

Längsbewegungen, die das Ergebnis verfälschen, bilden sie hingegen nicht ab. Mit der Methode lässt sich etwa die Fließfähigkeit von Polymerschmelzen bei der Produktion von Kunststoffen besser vorhersagen. Die Ergebnisse wurden in der Fachzeitschrift "Physical Review Letters" als "Editor's Suggestion" veröffentlicht und auf dem Webportal "Physics" der Amerikanischen Physikalischen Gesellschaft kommentiert. (DOI: 10.1103/PhysRevLett.115.148302).

Viele Produkte, die wir jeden Tag verwenden, bestehen aus Polymeren, zum Beispiel Autoreifen, Gummibänder oder Getränkeflaschen. Auch in der Natur spielen solche langkettigen Moleküle eine wichtige Rolle, zu den Polymeren zählen etwa die Proteine und die DNA.

Ihre stofflichen Eigenschaften sind sowohl für die Herstellung von Kunststoffen als auch für die Funktionsfähigkeit von Proteinen oder DNA essentiell. Bei der Produktion von Kunststoffen etwa werden Polymerschmelzen durch lange Röhrensysteme geleitet. Die Viskosität der Schmelzen genau vorhersagen und kontrollieren zu können, hilft dabei, die Anlagen und Prozesse besser anzupassen – und somit Kosten zu sparen.

In theoretischen Modellen ist es längst üblich, die Beweglichkeit von Polymeren durch gedachte Röhren zu beschreiben – in der sich der Polymerfaden ähnlich wie eine Schlange in einer echten Röhre bewegt. Gebildet werden diese Röhren von benachbarten Moleküle und es gilt: Je weiter die Röhre, desto mehr Freiraum hat das Molekül und umso höher ist die Beweglichkeit.

Bis jetzt war es allerdings nicht möglich, diesen Bewegungsradius direkt zu erfassen. Die bisherigen Messungen der Polymerbewegung lieferten daher nur ungenaue Ergebnisse, da sich die Polymere nicht nur quer, sondern zusätzlich auch längs zur gedachten Röhre bewegen: Mal "wagen" sie sich vor, mal ziehen sie sich wieder in die Röhre zurück.

"Diese Längsbewegungen, auch Reptation genannt, fallen bei den Ringen weg, weil es keine losen Enden gibt. Die Ringe bewegen sich nur quer zur Röhre", erläutert Dr. Sebastian Gooßen vom Jülicher Zentrum für Forschung mit Neutronen. "So lässt sich der Röhrendurchmesser direkt bestimmen; man könnte fast sagen, dass die Ringe ihn "ertasten". Bisher war es allerdings ausgesprochen schwierig, die benötigten Polymerringe in ausreichender Menge und Qualität herzustellen. Doch mit Hilfe eines neuen Syntheseverfahrens, das wir entwickelt haben, ist uns dies nun gelungen."

Die Forscher erwarten, dass sich mit ihrer Methode einige offene Fragen der Polymerdynamik klären lassen, zum Beispiel zur Fließfähigkeit von komplexen, verzweigten Polymeren, zu denen die meisten industriell genutzten Polymere zählen.

Möglicherweise wird sich damit eines Tages auch das Rätsel lösen lassen, warum einige Polymerschmelzen fließfähiger werden, wenn man ihnen wenig Raum gibt, wie Prof. Dr. Simone Napolitano von der Freien Universität Brüssel in einem Kommentar zum Artikel vorschlägt. Bis dahin muss die Empfindlichkeit der Jülicher Methode aber noch ein wenig gesteigert werden.


Originalveröffentlichung:
Sensing polymer chain dynamics through ring topology: a neutron spin echo study
S. Gooßen et al.;
Phys. Rev. Lett. 115, 148302 – Published 28 September 2015,
DOI: 10.1103/PhysRevLett.115.148302
http://dx.doi.org/10.1103/PhysRevLett.115.148302

Weitere Informationen:
Physics viewpoint “Caught in the Tube” (engl.): http://physics.aps.org/articles/v8/93
Forschungszentrum Jülich: www.fz-juelich.de
Jülich Centre for Neutron Science: www.fz-juelich.de/jcns/
Institutsbereich Neutronenstreuung (ICS-1/JCNS-1): http://www.fz-juelich.de/ics/ics-1/

Ansprechpartner:

Dr. Sebastian Gooßen, Forschungszentrum Jülich
Jülich Centre for Neutron Science - Neutronenstreuung (ICS-1/JCNS-1)
Tel. 02461 61-4775
E-Mail: s.goossen@fz-juelich.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
21.10.2019 | Universität Basel

nachricht Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum
21.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungsnachrichten

Das Stromnetz fit für E-Mobilität machen

21.10.2019 | Förderungen Preise

Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum

21.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics