Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Quantensensoren aus Diamant winzige Magnetfelder identifizieren

22.06.2016

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF entwickeln hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder im Nanometer-Bereich zu identifizieren. In Zukunft sollen die Sonden zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine.

Die Quantenmechanik ist nicht nur ein spannendes Feld der Grundlagenforschung. Fortschritte in der Quantentechnologie versprechen eine Vielzahl industrierelevanter Innovationen, die in den kommenden fünf bis zehn Jahren Einzug in die Wirtschaft halten werden.


Rasterelektronenmikroskop-Aufnahme einer Diamantspitze.

© Fraunhofer IAF


Die Diamantsonden werden künftig zur Qualitätskontrolle von magnetischen Speichermedien eingesetzt, um die Produktionskosten und Ausschussraten wesentlich zu reduzieren.

© Foto Harald Biebel - Fotolia

Forscher am Fraunhofer Institut für Angewandte Festkörperphysik IAF, an der Universität Stuttgart und am Max-Planck-Institut für Festkörperforschung entwickeln gemeinsam hochempfindliche Diamantsonden als Basis für neuartige Quantensensoren. Diese sind in der Lage, kleinste magnetische Felder mit nanometergenauer Ortsauflösung zu charakterisieren.

In Zukunft sollen die Sonden zur Analyse und Kontrolle von magnetischen Speichermedien eingesetzt werden, um fehlerhafte Festplattenbereiche zu identifizieren und so die Ausschussraten und Produktionskosten wesentlich zu reduzieren. Weitere Einsatzfelder liegen in der Charakterisierung biologischer Substanzen wie beispielsweise Proteine. Das 2016 gestartete Forschungsprogramm mit dem Namen »NMR (Nuclear Magnetic Resonance oder Kernspinresonanz) at the Nanoscale« hat eine Laufzeit von drei Jahren.

Unmittelbares Ziel der Kooperation zwischen Prof. Jörg Wrachtrup (Universität Stuttgart), Prof. Klaus Kern (Max-Planck-Institut) und Christoph Nebel (Fraunhofer IAF) ist die Herstellung von Magnetfeld-Sonden aus Diamantspitzen. Die Detektion von Magnetfeldern erfolgt über ein sogenanntes Stickstoff-Vakanz-Zentrum (NV), das sich etwa 10 Nanometer unter der Oberfläche der Diamantspitze befindet.

Die Spitzen (siehe Bild anbei) sind vergleichbar mit den Sonden eines Rasterkraftmikroskops und können mit hoher Präzision über magnetische Elemente anorganischer oder biologischer Art bewegt werden. Wirtschaftlich bedeutende Anwendungen sind Mess- und Kalibriersonden zur Qualitätskontrolle magnetischer Speicherplatten und Leseköpfe, deren Dimensionen in naher Zukunft bei ca. 20 Nanometern liegen werden.

Darüber hinaus ist geplant, die Magnetfeld-empfindlichen NV-Zentren in Diamant-Plättchen anzuordnen, um die Verteilung von magnetischen Momenten zu visualisieren. Dieses Verfahren ähnelt der klassischen optischen Mikroskopie, wobei das Bild die Verteilung von lokalen Magnetfeldern zeigen soll.

Festplattenkontrolle mit Magnetfeldsensoren aus Diamant

Der Markt für Speichermedien befindet sich seit Jahren im Boom. Grund dafür ist die fortschreitende Digitalisierung in allen Lebensbereichen: Sie lässt das weltweit generierte Datenvolumen rasant ansteigen. Waren es im Jahr 2015 noch 8 Zettabytes, soll der Wert bis zum Jahr 2020 laut der IDC-Studie »Digital Universe« auf über 40 Zettabytes ansteigen – dies entspricht einer Verdopplung alle zwei Jahre. Wie unvorstellbar groß diese Zahl ist, visualisieren die Experten der Studie mit folgendem Vergleich: Würde man jeweils ein Sandkorn pro Bit zum Speichern benutzen, so entsprächen 40 Zettabytes 57-mal der Menge an Sandkörnern aller Strände der Erde.

Mit steigendem Datenvolumen nimmt auch der Bedarf an kompakten magnetischen Speichermedien zu. Die Industrie produziert immer dichter beschriebene Festplatten. Aber mit der Datendichte steigt auch die Fehlerquote exponentiell an. Verdoppelt man die Datendichte, verzehnfacht sich die Fehlerrate in der Produktion und der Ausschuss steigt. Oft sind nur einzelne Sektoren der Festplatte fehlerhaft.

Mit den neuen Quantensensoren haben die Forscher des Fraunhofer IAF, der Universität Stuttgart und des Max Planck-Instituts eine mögliche Lösung gefunden, die einzelnen Datensegmente auf der Festplatte zu prüfen. Anhand der Diamantsensoren erkennen sie, ob ein Magnetfeld anliegt oder nicht. Fehlerhafte Segmente können damit geortet und vom Schreib- und Lesevorgang ausgeschlossen werden. Millionen von Festplatten oder Schreibköpfen können so geprüft, Ausschussraten reduziert und dadurch Kosten gesenkt werden.

Kernspinresonanz-Spektroskopie (NMR) mit Diamantsensoren

Die Identifikation kleinster Magnetfelder mit Diamantsensoren funktioniert wie folgt: In der winzigen Diamantspitze werden zwei benachbarte Kohlenstoffatome entfernt und eine der entstandenen Vakanzen durch ein Stickstoffatom ersetzt. Über die Elektronen des entstehenden Stickstoff-Vakanz-Zentrums können mit der Kernspinresonanz-Spektroskopie (NMR) selbst kleinste magnetische Felder mit einer Auflösung von wenigen Nanometern detektiert werden.

So können einzelne, nicht magnetische und damit fehlerhafte Datensegmente auf dem Speicherträger identifiziert und vom Schreib- und Lesevorgang ausgeschlossen werden. Das Ergebnis: Die Festplatte kann defektfrei verkauft werden. Kunden und Produzenten profitieren gleichermaßen vom abnehmenden Ausschuss und den sinkenden Produktionskosten.

In Zukunft könnten die Diamantsensoren in einer Vielzahl von unterschiedlichen Anwendungen zum Einsatz kommen, zum Beispiel in der Biomedizin für den Nachweis von Krankheiten und Giftstoffen oder in der Materialwissenschaft für die Zuverlässigkeits- und Sicherheitsprüfung.

Weitere Informationen:

http://www.iaf.fraunhofer.de/de/presse/pressemitteilungen/magnetfeldsensoren.htm... (weitere Informationen & Bildmaterial)
http://www.iaf.fraunhofer.de/de/mediathek/videos/diamantspitzen-fuer-die-qualita... (Film: Diamantspitzen für die Qualitätskontrolle von Festplatten)
http://www.iaf.fraunhofer.de/de/mediathek/videos/mit-diamantsensoren-winzige-mag... (Film: Mit Diamantsensoren winzige Magnetfelder identifizieren)

Michael Teiwes | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics