Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit neuer Technik im extrem-ultravioletten Lichtbereich beobachten Forschende Quanteninterferenzen in Echtzeit

14.02.2020

Einem Team um Prof. Dr. Frank Stienkemeier und Dr. Lukas Bruder vom Physikalischen Institut der Universität Freiburg ist es gelungen, ultraschnelle Quanteninterferenzen — also Schwingungsmuster — von Elektronen, die sich in der Atomhülle von Edelgasatomen befinden, in Echtzeit zu beobachten. Sie beobachteten dabei Schwingungen mit einer Periodendauer von nur etwa 150 Attosekunden – eine Attosekunde ist der milliardste Teil einer Milliardstelsekunde.

Die Wissenschaftlerinnen und Wissenschaftler regten dafür Edelgasatome mit eigens präparierten Laserpulsen an. Anschließend verfolgten sie die Reaktion der Atome mit einer neuen Messmethode, mit der sie quantenmechanische Effekte in Atomen und Molekülen in mit sehr hoher Zeitauflösung untersuchen können.


Laserpulse induzieren und verfolgen elektronische Quanteninterferenzen in einem Atom.

Grafik: AG Stienkemeier

Ihre Ergebnisse stellen die Forschenden in der aktuellen Ausgabe von Nature Communications vor.

Zahlreiche chemische Reaktionen, wie zum Beispiel Bindungsbrüche in Molekülen, werden durch Bestrahlung mit Licht ausgelöst. Im ersten Moment nach der Absorption des Lichts verändert sich die Struktur der Elektronen in der Atomhülle, was den weiteren Verlauf der Reaktion maßgeblich beeinflusst.

Diese Veränderung läuft sehr schnell ab, die Zeitskalen reichen bis in den Attosekundenbereich. Bisher verwendete Spektroskopietechniken, die sichtbare Laserpulse verwenden, sind nicht schnell genug, um solche Prozesse verfolgen zu können.

Deshalb entwickeln Forschende weltweit neuartige Laserquellen und entsprechende Spektroskopietechniken im extrem-ultravioletten Lichtbereich sowie im Röntgenbereich.

Das Team um Stienkemeier erweiterte eine aus dem sichtbaren Spektralbereich bekannte Technik, die so genannte Kohärente Pump-Probe-Spektroskopie, auf den extrem-ultravioletten Bereich. Das ist der spektrale Bereich zwischen Röntgenstrahlung und ultraviolettem Licht.

Dafür präparierten die Wissenschaftler am Freie-Elektronen-Laser FERMI in Triest/Italien eine Sequenz, die aus zwei ultrakurzen Laserpulsen im extrem-ultravioletten Bereich besteht. Beide Pulse hatten dabei einen genau bestimmten zeitlichen Abstand sowie eine genau definierte Phasenbeziehung zueinander.

Der erste Puls startet den Prozess in der Elektronenhülle, den Pump-Prozess, der zweite Puls dient als Abfrage über den Zustand der Elektronenhülle zu einem späteren Zeitpunkt, was der so genannte Probe-Prozess ist. Durch gezielte Veränderung des zeitlichen Abstands und der Phasenbeziehung konnten die Forschenden Rückschlüsse über die zeitliche Entwicklung in der Elektronenhülle ziehen.

„Die größte Herausforderung war, eine möglichst präzise Kontrolle über die Eigenschaften der Pulssequenz zu erlangen und die schwachen Signale messtechnisch zu isolieren“, erklärt Andreas Wituschek, der maßgeblich für die experimentelle Durchführung verantwortlich war.

Die Freiburger Physikerinnen und Physiker untersuchten unter anderem das Edelgas Argon. Bei diesem ergibt sich durch den Pump-Puls eine spezielle Konfiguration zweier Elektronen innerhalb der Atomhülle: Diese Konfiguration zerfällt, indem ein Elektron das Atom innerhalb einer sehr kurzen Zeit verlässt und schlussendlich das Atom als Ion zurückbleibt.

Den Forschenden gelang es zum ersten Mal, den direkten zeitlichen Zerfall der Quanteninterferenzen zu beobachten, während das eine Elektron das Atom verlässt. „Dieses Experiment bereitet den Weg für viele neue Anwendungen in der Untersuchung von atomaren und molekularen Prozessen nach gezielter Anregung mit hochenergetischer Strahlung im extrem-ultravioletten Bereich“, sagt Bruder.

Das Forschungsprojekt wurde im Rahmen der internationalen Graduiertenschule „CoCo“, die von der Deutschen Forschungsgemeinschaft eingerichtet wurde, sowie über die Projekte „COCONIS“ vom Europäischen Forschungsrat (ERC) und „LoKoFEL“ vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Originalpublikation:
Wituschek A., Bruder L., Allaria E., Bangert U., Binz M., Borghes R., Callegari C., Cerullo G., Cinquegrana P., Giannessi L., Danailov M., Demidovich A., Di Fraia M., Drabbels M., Feifel R., Laarmann T., Michiels R., Mirian N.S., Mudrich M., Nikolov I., O’Shea FH., Penco G., Piseri P., Plekan O., Prince K.C., Przystawik A., Ribič P.R., Sansone G., Sigalotti P., Spampinati S., Spezzani C., Squibb R.J., Stranges S., Uhl D. & Stienkemeier F. (2020):Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses. In: Nature Communications 11, 883 (2020). DOI: 10.1038/s41467-020-14721-2

Kontakt:
Prof. Dr. Frank Stienkemeier
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7609
E-Mail: stienkemeier@uni-freiburg.de

Originalpublikation:

https://www.pr.uni-freiburg.de/pm/2020/elektronen-in-schneller-bewegung?set_lang...

Nicolas Scherger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantentechnologien: Neue Einblicke in supraleitende Vorgänge
10.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht Nicht alle Kristalle lassen sich zum Ferromagnetismus zwingen
10.02.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit neuer Technik im extrem-ultravioletten Lichtbereich beobachten Forschende Quanteninterferenzen in Echtzeit

14.02.2020 | Physik Astronomie

Was Statine mit den Muskeln machen

14.02.2020 | Biowissenschaften Chemie

Dem Duft der Bienenkönigin auf der Spur: Erstmals Königinnenpheromon bei primitiven eusozialen Bienen identifiziert

14.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics