Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Licht zu Wasserstoff

07.10.2015

Eine organische Gerüstverbindung dient als Katalysator, um aus Wasser photolytisch Wasserstoff herzustellen

Der Energiebedarf der Menschheit steigt. Die Ressourcen der klassischen Energieträger sind dagegen endlich. Wasser und Sonnenlicht wiederum gibt es fast unbegrenzt.


Organische Netzwerkverbindungen (COFs) sind in der Lage, Wasserstoff zu produzieren. Das Modell der COF-Struktur ist farbcodiert, blau entspricht Stickstoff, grau Kohlenstoff und weiß Wasserstoff.

© Nature Communications / Macmillan Publishers / CC-BY-4.0

Wissenschaftler des Max-Planck-Instituts für Festkörperforschung in Stuttgart und von der Ludwig-Maximilians-Universität München haben nun ein Material geschaffen, das mittels Licht aus Wasser den vielseitigen Energieträger Wasserstoff erzeugt. Dieser polymere Photokatalysator ist chemisch robust. Zudem lässt sich die Rate der Wasserstoffproduktion über kleine strukturelle Veränderungen am Katalysator regulieren.

Es ist gar nicht so einfach, einen sogenannten Photokatalysator für die Spaltung von Wasser zu finden. Eine Substanz also, welche die Energie im Sonnenlicht direkt nutzt, um die Wasserstoff-Sauerstoff-Bindungen im Wasser aufzubrechen. In Labors gelingt dies bereits mit manchen Substanzen. Aber die Ausbeute ist häufig gering und der Weg in die industrielle Alltagspraxis noch fern.

Die Gruppe Nanochemie von Bettina Lotsch am Max-Planck-Institut für Festkörperforschung in Stuttgart und an der Ludwig-Maximilians-Universität (LMU) München hat nun – gemeinsam mit Theoretikern um Christian Ochsenfeld an der LMU – einen weiteren Ansatz entwickelt.

Die Forscher haben dabei sogenannte kovalente organische Netzwerkverbindungen (COFs, covalent organic frameworks) entworfen, die in der Lage sind, Wasserstoff zu produzieren.

COFs sind kristalline, hochmolekulare Polymere, bei denen bestimmte Ausgangsmoleküle zu sehr regelmäßigen, zwei- oder auch dreidimensionalen Strukturen vernetzt werden. Weil solche Netzwerkpolymere neben geeigneten optischen und elektronischen Eigenschaften eine relativ große Oberfläche aufweisen, zeigen sie auch gute katalytische Eigenschaften.

Wichtiger noch ist aber die molekulare Präzision, mit der solche Photokatalysatoren entworfen und optimiert werden können: Damit bilden COFs eine nützliche Plattform, um Materialeigenschaften gezielt variieren und damit den Prozess der Photokatalyse rational steuern zu können.

Elektronen auf Wanderschaft

Photokatalysatoren müssen ganz grundsätzlich über Elektronen verfügen, die sich mit sichtbarem Licht so anregen lassen, dass sie sich relativ frei bewegen und auf ein fremdes Atom oder Molekül übergehen können. Letztlich sind es diese Elektronen, die auf die Protonen im Wassermolekül übertragen werden – und somit elementaren Wasserstoff entstehen lassen.

Die in Stuttgart entwickelten COFs erfüllen all dies. Allerdings mussten die Forscher ihrem pulverförmigen Polymer noch Platin-Nanopartikel und einen sogenannten Elektronen-Donor zusetzen. „Die Platinteilchen wirken als Mikroelektroden, an denen die Elektronen vom COF zum Wasserstoff übergehen“, sagt Vijay Vyas, Wissenschaftler in der Nanochemiegruppe am Stuttgarter Max-Planck-Institut für Festkörperforschung.

„Und der Elektronen-Donor ist nötig, um die im COF zurückbleibende positive Ladung wieder auszugleichen“, so Vyas. Die Forscher gaben alle Zutaten in eine wässrige Lösung. Bestrahlten sie die Mixtur mit sichtbarem Licht, setzte die Bildung von Wasserstoff ein.

Für die Wissenschaftler war nicht nur erfreulich, dass die so geformten COFs in der Lage waren, Wasserstoff zu produzieren. Darüber hinaus gelang es ihnen, die Rate, mit der das Material Wasserstoff erzeugt, durch Einstellung der molekularen Geometrie der Netzwerke zu regulieren.

Zu diesem Zweck variierten sie gezielt das Ausgangsmaterial ­– eine Triphenylaryl-Verbindung –, aus dem sie den Katalysator herstellten. „Eine besonders hohe Wasserstoffausbeute erzielten wir, als die Ausgangssubstanz annähernd planar war“, sagt Vyas. Der Befund deckte sich auch mit parallel durchgeführten theoretischen Berechnungen. „Dies ist das erste Mal überhaupt, dass wir die photokatalytischen Eigenschaften eines COFs auf molekularer Ebene präzise einstellen können“, so der Max-Planck-Wissenschaftler.

In Zukunft wollen die Forscher diese Erkenntnisse nutzen, um ihre Substanzen gezielt weiterzuentwickeln. Ein Ziel ist dabei, den Mechanismus der Photokatalyse in diesen Systemen genauer zu verstehen und das komplexe Zusammenspiel der Einzelkomponenten weiter zu verfeinern.

Viele Einsatzmöglichkeiten

Trotz der ersten Erfolge sind auch diese Materialien noch weit davon entfernt, für eine industrielle Wasserstoffgewinnung aus Wasser und Sonnenlicht infrage zu kommen. Dafür müsste sich das Material beispielsweise kostengünstig in größeren Mengen herstellen lassen und über lange Zeiträume stabil Wasserstoff produzieren. Auch wenn diese und weitere Fragen noch offen sind, kann sich Vijay Vyas auf jeden Fall vorstellen, dass die Menschheit eines Tages in der Lage sein wird, Wasserstoff auf sehr effiziente Art einfach aus Licht, Wasser und einem Kohlenstoff-basierten Material herzustellen.

Dieser umweltfreundlich gewonnene Wasserstoff wäre dann für vieles einsetzbar. Schon heute gibt es Szenarien, ihn als Kraftstoff für Fahrzeuge oder für die Herstellung weiterer Energieträger zu nutzen. In Brennstoffzellen wiederum ließe sich mit Wasserstoff (und Sauerstoff) Strom erzeugen. Und auch der Wasserstoff, der derzeit in der Industrie für die Herstellung vieler wichtiger Chemikalien eingesetzt wird, ließe sich dann umweltfreundlich bereitstellen. Derzeit wird er vor allem aus fossilen Rohstoffen gewonnen.


Ansprechpartner

Bettina V. Lotsch
Chemistry Department, Ludwig-Maximilians-Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1610

E-Mail: b.lotsch@fkf.mpg.de


Originalpublikation
Vijay S. Vyas, Frederik Haase et.al.

A tunable azine covalent organic framework platform for visible light-induced hydrogen generation
Nature Communications, 6:8508, DOI: 10.1038/ncomms9508

Quelle

Bettina V. Lotsch | Max-Planck-Institut für Festkörperforschung, Stuttgart
Weitere Informationen:
https://www.mpg.de/9675673/photokatalysator-wasserstoffgewinnung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Für Körperscanner und Materialprüfung: Neues bildgebendes Verfahren für Terahertz-Strahlung setzt auf Mikrospiegel
06.12.2019 | Technische Universität Kaiserslautern

nachricht Schweizer Weltraumteleskop CHEOPS: Raketenstart voraussichtlich am 17. Dezember 2019
05.12.2019 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: Freiformflächen bis zu 80 Prozent schneller schlichten: Neue Werkzeuge und Algorithmen für die Fräsbearbeitung

Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.

Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RNA-Modifikation - Umbau unter Druck

06.12.2019 | Biowissenschaften Chemie

Der Versteppung vorbeugen

06.12.2019 | Geowissenschaften

Verstopfung in Abwehrzellen löst Entzündung aus

06.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics