Mit Licht kontrollierte neuartige Supraleiter könnten zukünftige Quantencomputer ermöglichen

Umschalten eines zweikomponentigen chiralen Ordnungsparameters auf einer Bloch-Kugel Martin Claassen / Nature Physics

Ein aktuelles Forschungsfeld im Bereich der Kontrolle von Quantenmaterialien besteht in der Nutzung von starker elektromagnetischer Strahlung, mit der Materialien aus ihrem normalen Gleichgewicht getrieben werden. Diese Manipulation führt zum Auftreten neuer Materialzustände mit nützlichen und kontrollierbaren Eigenschaften.

Jetzt hat ein Team aus Wissenschaftlern in den USA und Deutschland gezeigt, dass gezielt eingesetzte Laserpulse zur Kontrolle der Chiralität in topologischen Supraleitern genutzt werden können. Ihre Arbeit wurde gerade in Nature Physics veröffentlicht.

Supraleiter sind Materialien, die elektrischen Strom ohne Reibungsverluste leiten können. Derzeit passiert dies nur unter bestimmten Umständen, beispielsweise bei sehr tiefen Temperaturen.

Chirale topologische Supraleiter sind eine spezielle Klasse von Supraleitern, in der ein schwer aufzufindendes Teilchen – ein Majorana-Fermion – auftaucht.

Dieses kann für Quanten-Bits genutzt werden, um fehlerresistente Rechnungen durchzuführen. Allerdings sind die Kontrolle und Manipulation von chiralen Supraleitern schwierige Aufgaben.

Im Wesentlichen beruht die chirale topologische Natur dieser Materialien auf den Rotations- und Spiegel-Symmetrien des Kristallgitters, die wiederum eine subtile Balance zwischen konkurrierenden supraleitenden Zuständen aufrechterhalten.

Die Forscher am Center for Computational Quantum Physics (CCQ) am New Yorker Flatiron Institut (USA), an der Freien Universität Berlin und am Hamburger Max-Planck-Institut für Struktur und Dynamik der Materie (beide in Deutschland) haben herausgefunden, dass ein schwacher Lichtpuls diese Balance stören und eine dramatische Veränderung der elektronischen Ordnung erzeugen kann. Dies geschieht, weil der Puls durch die Wahl der Lichtpolarisation gezielt die unterliegenden Symmetrien bricht.

Insbesondere zeigte das Forscherteam, dass eine bestimmte Abfolge von Lichtpulsen gezielt die Chiralität („Händigkeit“) einer chiralen supraleitenden Region auf einer sehr schnellen Zeitskala umdrehen kann, nämlich innerhalb weniger Pikosekunden.

Eine Pikosekunde ist eine Billionstel (0,000 000 000 001) Sekunde. Diese Händigkeit ist eine intrinsische topologische Eigenschaft solcher Materialien und bestimmt die Laufrichtung (im oder gegen den Uhrzeigersinn) von Majorana-Fermionen, die am Rand des Materials auftauchen.

Eine spannende Folge dieser Arbeit ist die Möglichkeit, rein optisch topologisch geschützte Quantenschaltkreise zu „programmieren“. Mit diesen Schaltkreisen könnten Rechnungen mit den Ladungszuständen einzelner Elektronen gemacht werden, die in diese Majorana-Randzustände gebracht werden. Außerdem ist der zugrunde liegende Mechanismus robust und beruht ausschließlich auf Symmetrien und nicht etwa auf Materialdetails. Er könnte direkt auf jedes Material angewandt werden, das mehrkomponentige Ordnungsparameter aufweist.

Die Wissenschaftler sagen voraus, dass topologische Supraleitung in zeitaufgelösten Anregungs-und-Abfrage- („Pump-Probe“) Experimenten nachgewiesen werden kann, indem ein erster Laserpuls die Chiralität der Supraleitung umschaltet und ein zweiter Laserpuls diese Veränderung nach einer kurzen Wartezeit ‚ausliest‘.

Dies etabliert Pump-Probe-Experimente als ein neues experimentelles Werkzeug, um die vermutete, aber bislang nicht einwandfrei bestätigte chirale topologische Natur der Supraleitung in einer Reihe von Materialien zu belegen, etwa in Sr2RuO4, Doppellagen-Graphen mit leichter Rotation der beiden Ebenen („twisted bilayer graphene“), SrPtAs, oder UPt3.

Wissenschaftliche Ansprechpartner:

Martin Claassen, Flatiron Research Fellow, mclaassen@flatironinstitute.org

https://www.nature.com/articles/s41567-019-0532-6

http://www.mpsd.mpg.de/534166/2019-05-majorana-claassen-sentef
http://www.nature.com/articles/s41567-019-0540-6

Media Contact

Jenny Witt Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer