Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Gold gespickt: Forscherteam präsentiert neuartigen Sender für Terahertz-Wellen

16.03.2020

Terahertz-Wellen werden für Wissenschaft und Technologie immer wichtiger. Allerdings ist die Erzeugung dieser Wellen nach wie vor eine Herausforderung. Einem Team des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der TU Dresden und der Universität Konstanz ist nun ein deutlicher Fortschritt gelungen. Es hat ein mit Gold gespicktes Germaniumbauteil entwickelt, das kurze Terahertz-Pulse mit einer vorteilhaften Eigenschaft erzeugt: Die Pulse sind überaus „breitbandig“, liefern also viele verschiedene Terahertz-Frequenzen zugleich. Da sich das Bauteil mit den Methoden der Halbleiterindustrie fertigen ließe, verspricht die Entwicklung einen breitgefächerten Einsatz in Forschung und Technik.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Im Spektrum liegen sie genau zwischen Mikrowellen und Infrarotstrahlung. Doch während Mikrowelle und Infrarot schon lange den Alltag erobert haben, finden Terahertz-Wellen erst allmählich Verwendung.


Terahertz-Welle

HZDR / Juniks

Der Grund: Erst seit Beginn der 2000er Jahre gelingt es Experten, halbwegs passable Quellen für Terahertz-Wellen zu bauen. Perfekt sind diese Sender aber noch nicht – sie sind relativ groß und teuer, und die von ihnen abgegebene Strahlung hat nicht immer die gewünschten Eigenschaften.

Eine der heute etablierten Erzeugungsmethoden basiert auf einem Kristall aus dem Halbleiter Galliumarsenid. Wird dieser Kristall mit kurzen Laserpulsen bestrahlt, bilden sich im Galliumarsenid Ladungsträger.

Diese Ladungen werden durch eine angelegte Spannung beschleunigt. Das erzwingt die Abstrahlung einer Terahertz-Welle – im Grunde der gleiche Mechanismus wie bei einem UKW-Sendemast, in dem hin und her bewegte Ladungen Radiowellen erzeugen.

Doch diese Methode besitzt mehrere Nachteile: „Sie lässt sich nur mit relativ teuren Speziallasern betreiben“, erläutert HZDR-Physiker Dr. Harald Schneider. „Mit Standardlasern, wie man sie für die Glasfaser-Kommunikation verwendet, funktioniert das nicht.“ Ein weiteres Manko: Galliumarsenid-Kristalle liefern nur relativ schmalbandige Terahertz-Pulse und damit einen eingeschränkten Frequenzbereich – was ihr Einsatzgebiet merklich begrenzt.

Implantiertes Edelmetall

Deswegen setzten Schneider und sein Team auf ein anderes Material – den Halbleiter Germanium. „Bei Germanium lassen sich günstigere Laser nutzen, sogenannte Faserlaser“, sagt Schneider. „Außerdem sind Germaniumkristalle sehr transparent und erlauben damit die Emission von sehr breitbandigen Pulsen.“

Bislang aber gab es ein Problem: Wird reines Germanium mit einem kurzen Laserpuls bestrahlt, dauert es mehrere Mikrosekunden, bis sich die elektrische Ladung im Halbleiter wieder abgebaut hat. Erst danach kann der Kristall den nächsten Laserpuls aufnehmen. Heutige Laser können ihre Impulse im Takt von wenigen Dutzend Nanosekunden abfeuern – eine Schussfolge, viel zu schnell für das Germanium.

Um diese Schwierigkeit zu meistern, suchten die Fachleute nach einem Trick, mit dem sich die elektrischen Ladungen im Germanium schneller abbauen lassen. Die Lösung fand sich bei einem prominenten Edelmetall – Gold. „Wir nutzten einen Ionenbeschleuniger, um Goldatome in einen Germaniumkristall zu schießen“, erläutert Schneiders Kollege Dr. Abhishek Singh.

„Dabei drang das Gold bis zu 100 Nanometer tief in den Kristall ein.“ Anschließend erhitzten die Fachleute den Kristall einige Stunden lang auf 900 Grad Celsius. Die Hitzekur sorgte dafür, dass sich die Goldatome gleichmäßig im Germaniumkristall verteilten.

Der Erfolg zeigte sich, als das Team das goldgespickte Germanium mit ultrakurzen Laserpulsen beleuchtete: Statt für mehrere Mikrosekunden im Kristall herumzugeistern, verschwanden die elektrischen Ladungsträger bereits nach knapp zwei Nanosekunden wieder – etwa tausendmal schneller als vorher.

Bildlich gesprochen fungierte das Gold dabei als Falle, die Ladungen einfängt und neutralisieren hilft. „Dadurch lässt sich der Germaniumkristall nun mit hoher Wiederholungsrate mit Laserpulsen beschießen, und er funktioniert trotzdem“, freut sich Singh.

Günstige Fertigung möglich

Die neue Methode ermöglicht Terahertz-Pulse mit extrem großer Bandbreite: Statt 7 Terahertz wie bei der etablierten Galliumarsenid-Technik ist es nun das Zehnfache – 70 Terahertz. „Auf einen Schlag bekommt man ein breites und lückenloses Spektrum“, schwärmt Harald Schneider. „Damit haben wir eine äußerst vielseitige Quelle zur Hand, geeignet für verschiedenste Anwendungen.“

Ein weiteres Plus: Im Prinzip lassen sich die Germanium Bauteile mit derselben Technologie verarbeiten, mit der auch Mikrochips hergestellt werden. „Anders als Galliumarsenid ist Germanium kompatibel mit Silizium“, beschreibt Schneider. „Und da sich die neuen Bauteile zusammen mit herkömmlichen Glasfaser-Lasern betreiben lassen, könnte man die Technik vergleichsweise platzsparend und preiswert gestalten.“

Das dürfte das golddotierte Germanium nicht nur für wissenschaftliche Anwendungen interessant machen, etwa die detaillierte Analyse innovativer zweidimensionaler Materialien wie Graphen. Möglich scheinen auch Anwendungen in Medizin und Umwelttechnik.

Denkbar sind zum Beispiel Sensoren, die bestimmte Gase in der Atmosphäre anhand ihres Terahertz-Spektrums aufspüren. Die heutigen Terahertz-Quellen sind dafür noch zu teuer. Das neue Verfahren aus Dresden-Rossendorf könnte dazu beitragen, solche Umweltsensoren künftig billiger zu machen.

Publikation:
A. Singh, A. Pashkin, S. Winnerl, M. Welsch, C. Beckh, P. Sulzer, A. Leitenstorfer, M. Helm, H. Schneider: Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser, in Light: Science & Applications, 2020 (DOI: 10.1038/s41377-020-0265-4)

Weitere Informationen:
Dr. Harald Schneider
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 2880 | E-Mail: h.schneider@hzdr.de

Dr. Alexej Pashkin
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3287 | E-Mail: a.pashkin@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Harald Schneider
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 2880 | E-Mail: h.schneider@hzdr.de

Dr. Alexej Pashkin
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3287 | E-Mail: a.pashkin@hzdr.de

Originalpublikation:

A. Singh, A. Pashkin, S. Winnerl, M. Welsch, C. Beckh, P. Sulzer, A. Leitenstorfer, M. Helm, H. Schneider: Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser, in Light: Science & Applications, 2020 (DOI: 10.1038/s41377-020-0265-4)

Weitere Informationen:

https://www.hzdr.de/presse/novel_transmitter_for_terahertz_waves

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zweifel an grundsätzlichen Annahmen zum Universum
08.04.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Langlebigere Satelliten, weniger Weltraumschrott
08.04.2020 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics