Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit geballtem Licht auf Diamantatome

06.08.2015

Ein internationales Physikerteam hat mit Hilfe von Nanoröhrchen Laserpulse so modifiziert, dass ihre Kraft gezielter auf Kohlenstofffolien wirkt. Damit verbessern die Forscher die für den medizinischen Einsatz aussichtsreiche, lichtgetriebene Ionenstrahlung.

Licht-Materie-Wechselwirkung an Kohlenstofffolien könnte der Schlüssel zu einer neuen Ära in der Ionenbeschleunigung für medizinische Anwendungen sein.


Ein Laserstrahl trifft auf eine Schicht aus Nanoröhrchen. Die Nanoröhrchen fokussieren das Licht auf die dahinter liegende Kohlenstofffolie. Aus ihr werden so Ionen herausgelö

Isabella Cortrie

Ein internationales Team unter der Führung von Physikern des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP) an der Ludwig-Maximilians-Universität (LMU) und am Max-Planck-Institut für Quantenoptik hat nun die aussichtsreiche Technik der Lichtdruck-Beschleunigung weiter verbessert. Mit ihr gewinnt man aus extrem starken Laserblitzen Ionenpulse.

Die Forscher haben erstmals die hauchdünnen Folien aus diamantartigem Kohlenstoff mit Nanoröhrchen bedampft. Sie fungieren bei Bestrahlung mit starken Laserpulsen als Linse und fokussieren den Laser stärker als bisher auf die Kohlenstofffolie. Die Folge davon ist, dass Ionen weitaus höhere Energien aufnehmen als bisher. Damit werden erste Strahlenexperimente mit Kohlenstoff-Ionen an Zellen möglich und ein medizinischer Einsatz der lichtgetriebenen Ionenstrahlung greifbar.

Licht verfügt über enorme Kräfte. Treffen etwa hochintensive Laserpulse auf hauchdünne, diamantartige Folien aus Kohlenstoff, lösen sie Ionen heraus und beschleunigen diese auf rund zehn Prozent der Lichtgeschwindigkeit.

Es entsteht Ionenstrahlung, getrieben durch den Strahlungsdruck der ultrakurzen Laserpulse. Ionenstrahlung kann zur Behandlung von Tumoren in der Krebstherapie eingesetzt werden, wenn sie über genug Energie verfügt. Aktuell wird diese hochenergetische Strahlung von großen, kostenintensiven Beschleunigern erzeugt.

Die Lasertechnologie ist noch nicht in der Lage, eine ebenbürtige Strahlung zu erzeugen. Aber sie hat das Potential die notwendige Technologie für den medizinischen Einsatz der Ionenstrahlung künftig kostengünstiger und platzsparender zur Verfügung zu stellen.

Um dies zu erreichen haben die Laserphysiker zwei Optionen: zum einen müssen sie die Intensität der Laserpulse erhöhen. Und zum anderen müssen sie ihre Intensität so kompakt zusammenballen, dass der Puls extrem fokussiert und mit voller Wucht auf die Kohlenstofffolien auftrifft. Letzteres haben nun die MAP-Physiker getan.

Die auf die Kohlenstofffolien auftreffenden Laserpulse dauern nämlich rund 50 Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde) und bestehen aus rund 20 Lichtwellenschwingungen. Das heißt: die in dem Puls gespeicherte elektromagnetischen Kräfte kommen nicht geballt zu einem bestimmten Zeitpunkt auf der Kohlenstofffolie an, sondern der Lichtdruck auf die Ionen wird verhältnismäßig langsam gesteigert bis er ein Maximum erreicht. Erst dann schlägt er die Ionen aus der Folie heraus. Über den gesamten Prozess geht viel Energie verloren.

Im MAP-Service-Centre wurden nun die diamantartigen Kohlenstofffolien, die Grundlage für die ersten Studien zur Strahlungsdruckbeschleunigung vor fünf Jahren waren, mit einer Mikrometer dünnen Schicht aus Nanoröhrchen bedampft. Diese Röhrchen liegen ungeordnet auf der Folie, wie etwa Stroh in einem Heuhaufen.

Die Röhrchen haben zur Folge, dass die Leistung des auftreffenden Laserpulses beim Durchgang so gebündelt wird, dass ihre Kraft augenblicklich auf die dahinter liegende Kohlenstofffolie wirkt und sich nicht erst langsam aufbaut. Zudem fokussieren die Nanoröhrchen die Lichtpulse stark auf einen „Brennpunkt“ auf der Folie.

Beide Effekte haben zur Folge, dass die aus der Kohlenstofffolie herausgelösten Ionen über eine deutlich höhere Energie verfügen als bisher (rund 200 Megaelektronenvolt, MeV). Die Experimente wurden im Rahmen des Laserlab-Europe-Programms am ASTRA-Gemini Laser des Rutherford Appleton Laboratory’s durchgeführt. In der Kollaboration arbeiteten Forscher aus Deutschland, Großbritannien, Spanien und China.

Mit der verbesserten, lichtgetriebenen Ionenstrahlung werden nun erstmals Experimente mit Kohlenstoff-Ionen an Zellen möglich. Um lichtgetriebene Ionenstrahlung zur Bekämpfung von Tumoren im menschlichen Körper einzusetzen, werden jedoch Energien von mindestens einem GeV (Gigaelektronenvolt) benötigt, also rund fünfmal so viel wie aktuell möglich ist.

Denn die Strahlung muss erst gesundes Gewebe durchdringen bis sie einen Tumor erreicht. Dieses Ziel ist nicht utopisch: Auf den Grundlagen des Forschungsverbunds des Munich-Centres for Advanced Photonics entsteht auf dem Forschungscampus in Garching das Centre for Advanced Laser Applications (CALA).

Das Laserforschungszentrum wird ein neues Kurzpulslasersystem, den ATLAS 3000, beherbergen. Mit ihm werden erstmals Laserpulse erzeugt, die über eine Leistung von drei Petawatt verfügen. Die daraus erzeugten Laserpulse in Kombination mit der verbesserten Nanoröhrchen-Kohlenstofffolien-Technologie lassen einen medizinischen Einsatz von lichtgetriebener Ionenstrahlung näher rücken.

Originalpublikation:
J. H. Bin, W. J. Ma, H. Y. Wang, M. J. V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P. S. Foster, B. Dromey, X. Q. Yan, R. Ramis, J. Meyer-ter-Vehn, M. Zepf, and J. Schreiber
Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas
Phys. Rev. Lett. 115, 064801 (2015), 3 August 2015,
doi: 10.1103/PhysRevLett.115.064801

Weitere Informationen erhalten Sie von:
Prof. Jörg Schreiber
Ludwig-Maximilians-Universität München (LMU)
Fakultät für Physik, Lehrstuhl für Experimentalphysik - Medizinische Physik
Am Coulombwall 1, 85748 Garching, Germany
Tel.: +49 (0)89 289-54025
Email: Joerg.Schreiber@lmu.de

Karolina Schneider | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.munich-photonics.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics