Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Elektrizität Magnetismus umschalten

17.01.2018

An der TU Wien gelang ein wichtiger Schritt zur Verbindung von elektrischen und magnetischen Materialeigenschaften – ein Zusammenhang, der für die Elektronik eine wichtige Rolle spielt.

Dass Elektrizität und Magnetismus eng miteinander zusammenhängen, weiß man schon lange. Doch in der Materialwissenschaft hat man magnetische und elektrische Effekte lange Zeit getrennt voneinander beobachtet:


Elektrizität und Magnetismus

Graphische Gestaltung: Jakob Listabarth


Eine Herausforderung: Zwischen magnetischen Speichern und elektrischen Schreibsignalen richtig zu vermitteln

Graphische Gestaltung: Jakob Listabarth

Magnetische Materialeigenschaften beeinflusst man normalerweise mit magnetischen Feldern, elektrische Eigenschaften mit elektrischer Spannung. Eine spezielle Klasse von Materialien, die sogenannten Multiferroika, verbinden allerdings beides.

Nun gelang es an der TU Wien, magnetische Schwingungen bestimmter eisenhältiger Materialien mit Hilfe elektrischer Felder zu kontrollieren. Vielversprechende Möglichkeiten eröffnen sich damit für die Computertechnik, wo Daten in Form elektrischer Signale übertragen aber magnetisch abgespeichert werden.

Elektrische und magnetische Materialien: Zwei verschiedene Welten

In der Festkörperphysik hat man es oft mit Materialeigenschaften zu tun, die sich mit magnetischen oder elektrischen Feldern beeinflussen lassen. Doch normalerweise kann man magnetische und elektrische Effekte getrennt voneinander betrachten, weil sie ganz unterschiedliche Ursachen haben:

Magnetische Effekte kommen daher, dass Teilchen eine innere magnetische Richtung haben, den sogenannten Spin. Elektrische Effekte hingegen haben damit zu tun, dass es positive und negative Ladungen im Material gibt, die sich räumlich zueinander verschieben können.

„Bei Materialien mit ganz bestimmten räumlichen Symmetrien kann man allerdings beides miteinander verknüpfen“, erklärt Prof. Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. Er forscht an solchen speziellen Materialien, den „Multiferroika“ bereits seit einigen Jahren. Weltweit gelten Multiferroika heute als vielversprechendes neues Feld in der Festkörperphysik.

Interessante Experimente zur Kopplung von magnetischen und elektrischen Effekten gab es bereits, nun gelang es Pimenov und seinem Forschungsteam erstmals, hochfrequente magnetische Schwingungen eines Materials aus Eisen, Bor und seltenen Erden mit elektrischen Feldern zu kontrollieren.

„Das Material enthält dreifach positiv geladene Eisenatome. Sie haben ein magnetisches Moment, das mit einer Frequenz von 300 Gigahertz schwingt“, sagt Pimenov. „Dass man solche Schwingungen mit einem magnetischen Feld steuern kann, wäre naheliegend. Wir konnten allerdings zeigen, dass sich diese Schwingungen durch ein elektrisches Feld gezielt variieren lassen.“ Ein dynamischer magnetischer Effekt – ein magnetischer Schwingungszustand der Eisenatome – kann also durch ein statisches elektrisches Feld ein- oder ausgeschaltet werden.

Magnetische Datenspeicher, elektrisches Schreiben

Interessant ist das ganz besonders für künftige Elektronik: „Unsere Festplatten speichern Daten magnetisch. Es ist allerdings recht schwer, Daten magnetisch schnell und präzise zu schreiben“, sagt Pimenov. „Ein elektrisches Feld punktgenau anzulegen, ist viel einfacher, dazu genügt ein simpler Spannungspuls, das geht sehr schnell und ohne nennenswerte Energieverluste.“ Mit Materialien, die magnetische und elektrische Effekte koppeln, könnten sich die Vorteile von magnetischem Speichern und elektrischem Schreiben möglicherweise verbinden lassen.

Originalpublikation: Switching of Magnons by Electric and Magnetic Fields in Multiferroic Borates, A.?M. Kuzmenko et al., Phys. Rev. Lett. 120.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.027203

Rückfragen:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at

https://www.tuwien.ac.at/aktuelles/news_detail/article/125534/

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Graphen auf dem Weg zur Supraleitung
12.11.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Datensicherheit: Aufbruch in die Quantentechnologie
09.11.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Forschungsschiff Polarstern startet Antarktissaison

Wie sieht es unter dem Schelfeis des abgebrochenen Riesen-Eisbergs A68 aus?

Am Samstag, den 10. November 2018 verlässt das Forschungsschiff Polarstern seinen Heimathafen Bremerhaven Richtung Kapstadt, Südafrika.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

Mehrwegbecher-System für Darmstadt: Prototyp-Präsentation am Freitag, 16. November, 11 Uhr

09.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein magnetisches Gedächtnis für den Computer

12.11.2018 | Energie und Elektrotechnik

Autonomes Parken wird erprobt

12.11.2018 | Informationstechnologie

Multicopter und Satelliten für den Rettungseinsatz

12.11.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics