Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur

26.04.2019

Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen. Mittels Diamant-Quantensensoren konnten sie die Stärke von Magnetfeldern an einzelnen Atomlagen aus Chromtriiodid ermitteln. Zudem haben sie eine Erklärung für die ungewöhnlichen magnetischen Eigenschaften des Materials gefunden. Die Zeitschrift «Science» hat die Ergebnisse veröffentlicht.

Der Einsatz von zweidimensionalen Van-der-Waals-Materialien verspricht Innovationen in zahlreichen Bereichen. Wissenschaftler weltweit untersuchen immer neue Möglichkeiten, verschiedene einlagige Atomschichten zu stapeln und damit neue Materialien mit besonderen Eigenschaften herzustellen.


Ein Diamant-Quantensensor wird genutzt, um die magnetischen Eigenschaften von einzelnen Atomlagen aus Chromtriiodid quantitativ zu untersuchen.

Bild: Universität Basel, Departement Physik

Diese superdünnen Verbundstoffe werden durch Van-der-Waals-Kräfte zusammengehalten und verhalten sich oft anders als dreidimensionale Kristalle des gleichen Materials.

Unter den Materialien, die nur eine Atomlage dünn sind, gibt es Isolatoren, Halbleiter, Supraleiter und auch einige wenige mit magnetischen Eigenschaften. Ihr Einsatz in der Spintronik oder als winzige magnetische Speicher ist sehr vielversprechend.

Erstmals präzise Messung der Magnetisierung

Bisher war es nicht möglich, die Stärke, Ausrichtung und Struktur dieser Magnete quantitativ und auf der Nanometerskala zu bestimmen. Das Team um Georg-H.-Endress-Professor Dr. Patrick Maletinsky vom Departement Physik und Swiss Nanoscience Institute der Universität Basel hat nun gezeigt, dass der Einsatz von Diamantspitzen mit einzelnen Elektronen-Spins in einem Rasterkraftmikroskop für derartige Untersuchungen bestens geeignet ist.

«Wir eröffnen mit unserer Methode, die einzelne Spins in Diamantfehlstellen als Sensoren nutzt, einen ganz neuen Bereich. Von nun an lassen sich die magnetischen Eigenschaften von zweidimensionalen Materialien auf der Nanoskala und sogar auf quantitative Art und Weise untersuchen. Unsere neuartigen Quantensensoren sind für diese komplexe Aufgabe bestens geeignet», kommentiert Patrick Maletinsky.

Anzahl der Schichten entscheidend

Mit dieser in Basel entwickelten und auf einem einzelnen Elektronenspin basierenden Technik haben die Wissenschaftler zusammen mit Forschenden der Universität Genf nun die magnetischen Eigenschaften von einzelnen Atomlagen aus Chromtriiodid (CrI3). Damit konnten die Forscher auch die Antwort auf eine zentrale, wissenschaftliche Frage zum Magnetismus dieses Materials finden.

Als dreidimensionaler Kristall ist Chromtriiodid vollständig magnetisch geordnet. Bei wenigen atomaren Lagen weisen jedoch nur Stapel mit einer ungeraden Anzahl an Atomschichten eine Magnetisierung auf. Stapel mit einer geraden Zahl an Lagen zeigen sogenannte «antiferromagnetische» Eigenschaften, sind also nicht magnetisiert. Die Ursache für diese Abhängigkeit war bisher nicht bekannt.

Verspannung als Ursache

Das Maletinsky-Team konnte nun zeigen, dass dieses Phänomen auf der besonderen Schichtung der Lagen beruht. Durch die Probenpräparation verschieben sich die einzelnen Chromtriiodid-Lagen leicht gegeneinander. Die resultierenden Verspannungen im Gitter bewirken, dass sich die Spins aufeinanderfolgender Lagen nicht in die gleiche Richtung ausrichten können.

Stattdessen wechselt sich die Spinrichtung in den Schichten ab. Bei einer gleichen Anzahl von Lagen heben sich die Magnetisierungen somit auf, bei einer ungeraden Anzahl entspricht die Stärke des gemessenen Magnetfeldes dem einer einzelnen Schicht.

Werden die Verspannungen zwischen den Schichten jedoch gelöst, beispielsweise durch eine Punktion der Probe, richten sich die Spins aller Schichten gleich aus – wie das auch in dreidimensionalen Kristallen beobachtet wird. Die Magnetstärke des ganzen Stapels entspricht dann der Summe der einzelnen Schichten.

Die Arbeit der Basler Wissenschaftler beatwortet damit nicht nur eine zentrale Frage der zweidimensionalen Van-der-Waals-Magnete. Sie eröffnet auch interessante Perspektiven, wie ihre innovativen Quantensensoren in Zukunft zum Studium zweidimensionaler Magnete genutzt werden können um damit zur Entwicklung neuartiger elektronischer Bausteine beizutragen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Patrick Maletinsky, Universität Basel, Departement Physik, Tel. +41 61 207 37 63, E-Mail: patrick.maletinsky@unibas.ch

Originalpublikation:

L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky
Probing magnetism in 2D materials at the nanoscale with single spin microscopy
Science (2019), doi: 10.1126/science.aav6926
https://science.sciencemag.org/lookup/doi/10.1126/science.aav6926

Ein hochaufgelöstes Bild zu dieser Medienmitteilung findet sich in der Mediendatenbank.

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch
https://www.unibas.ch/de/Aktuell/News/Uni-Research/Mit-Diamanten-den-Eigenschaften-zweidimensionaler-Magnete-auf-der-Spur.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie verformen sich Rotorblätter bei Windböen?
17.02.2020 | Jade Hochschule - Wilhelmshaven/Oldenburg/Elsfleth

nachricht ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze
14.02.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion

17.02.2020 | Interdisziplinäre Forschung

AgiloBat: Batteriezellen flexibel produzieren

17.02.2020 | Energie und Elektrotechnik

Nierenkrebs an der Wurzel packen

17.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics