Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur

26.04.2019

Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen. Mittels Diamant-Quantensensoren konnten sie die Stärke von Magnetfeldern an einzelnen Atomlagen aus Chromtriiodid ermitteln. Zudem haben sie eine Erklärung für die ungewöhnlichen magnetischen Eigenschaften des Materials gefunden. Die Zeitschrift «Science» hat die Ergebnisse veröffentlicht.

Der Einsatz von zweidimensionalen Van-der-Waals-Materialien verspricht Innovationen in zahlreichen Bereichen. Wissenschaftler weltweit untersuchen immer neue Möglichkeiten, verschiedene einlagige Atomschichten zu stapeln und damit neue Materialien mit besonderen Eigenschaften herzustellen.


Ein Diamant-Quantensensor wird genutzt, um die magnetischen Eigenschaften von einzelnen Atomlagen aus Chromtriiodid quantitativ zu untersuchen.

Bild: Universität Basel, Departement Physik

Diese superdünnen Verbundstoffe werden durch Van-der-Waals-Kräfte zusammengehalten und verhalten sich oft anders als dreidimensionale Kristalle des gleichen Materials.

Unter den Materialien, die nur eine Atomlage dünn sind, gibt es Isolatoren, Halbleiter, Supraleiter und auch einige wenige mit magnetischen Eigenschaften. Ihr Einsatz in der Spintronik oder als winzige magnetische Speicher ist sehr vielversprechend.

Erstmals präzise Messung der Magnetisierung

Bisher war es nicht möglich, die Stärke, Ausrichtung und Struktur dieser Magnete quantitativ und auf der Nanometerskala zu bestimmen. Das Team um Georg-H.-Endress-Professor Dr. Patrick Maletinsky vom Departement Physik und Swiss Nanoscience Institute der Universität Basel hat nun gezeigt, dass der Einsatz von Diamantspitzen mit einzelnen Elektronen-Spins in einem Rasterkraftmikroskop für derartige Untersuchungen bestens geeignet ist.

«Wir eröffnen mit unserer Methode, die einzelne Spins in Diamantfehlstellen als Sensoren nutzt, einen ganz neuen Bereich. Von nun an lassen sich die magnetischen Eigenschaften von zweidimensionalen Materialien auf der Nanoskala und sogar auf quantitative Art und Weise untersuchen. Unsere neuartigen Quantensensoren sind für diese komplexe Aufgabe bestens geeignet», kommentiert Patrick Maletinsky.

Anzahl der Schichten entscheidend

Mit dieser in Basel entwickelten und auf einem einzelnen Elektronenspin basierenden Technik haben die Wissenschaftler zusammen mit Forschenden der Universität Genf nun die magnetischen Eigenschaften von einzelnen Atomlagen aus Chromtriiodid (CrI3). Damit konnten die Forscher auch die Antwort auf eine zentrale, wissenschaftliche Frage zum Magnetismus dieses Materials finden.

Als dreidimensionaler Kristall ist Chromtriiodid vollständig magnetisch geordnet. Bei wenigen atomaren Lagen weisen jedoch nur Stapel mit einer ungeraden Anzahl an Atomschichten eine Magnetisierung auf. Stapel mit einer geraden Zahl an Lagen zeigen sogenannte «antiferromagnetische» Eigenschaften, sind also nicht magnetisiert. Die Ursache für diese Abhängigkeit war bisher nicht bekannt.

Verspannung als Ursache

Das Maletinsky-Team konnte nun zeigen, dass dieses Phänomen auf der besonderen Schichtung der Lagen beruht. Durch die Probenpräparation verschieben sich die einzelnen Chromtriiodid-Lagen leicht gegeneinander. Die resultierenden Verspannungen im Gitter bewirken, dass sich die Spins aufeinanderfolgender Lagen nicht in die gleiche Richtung ausrichten können.

Stattdessen wechselt sich die Spinrichtung in den Schichten ab. Bei einer gleichen Anzahl von Lagen heben sich die Magnetisierungen somit auf, bei einer ungeraden Anzahl entspricht die Stärke des gemessenen Magnetfeldes dem einer einzelnen Schicht.

Werden die Verspannungen zwischen den Schichten jedoch gelöst, beispielsweise durch eine Punktion der Probe, richten sich die Spins aller Schichten gleich aus – wie das auch in dreidimensionalen Kristallen beobachtet wird. Die Magnetstärke des ganzen Stapels entspricht dann der Summe der einzelnen Schichten.

Die Arbeit der Basler Wissenschaftler beatwortet damit nicht nur eine zentrale Frage der zweidimensionalen Van-der-Waals-Magnete. Sie eröffnet auch interessante Perspektiven, wie ihre innovativen Quantensensoren in Zukunft zum Studium zweidimensionaler Magnete genutzt werden können um damit zur Entwicklung neuartiger elektronischer Bausteine beizutragen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Patrick Maletinsky, Universität Basel, Departement Physik, Tel. +41 61 207 37 63, E-Mail: patrick.maletinsky@unibas.ch

Originalpublikation:

L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky
Probing magnetism in 2D materials at the nanoscale with single spin microscopy
Science (2019), doi: 10.1126/science.aav6926
https://science.sciencemag.org/lookup/doi/10.1126/science.aav6926

Ein hochaufgelöstes Bild zu dieser Medienmitteilung findet sich in der Mediendatenbank.

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch
https://www.unibas.ch/de/Aktuell/News/Uni-Research/Mit-Diamanten-den-Eigenschaften-zweidimensionaler-Magnete-auf-der-Spur.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Direkte Abbildung von Riesenmolekülen
24.05.2019 | Max-Planck-Institut für Quantenoptik

nachricht MiLiQuant: Quantentechnologie nutzbar machen
23.05.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics