Mit dem Rauschen arbeiten

Bei astronomischen Beobachtungen ist Rauschen ein unerwünschtes Phänomen. Foto: ESA/Hubble & NASA/Judy Schmidt

Rauschen ist meistens ein unerwünschtes Phänomen, etwa bei einem aufgenommenen Gespräch bei Umgebungslärm, astronomischen Beobachtungen mit großen Hintergrundsignalen oder bei der Bildverarbeitung. Ein Forscherteam aus dem Paul-Drude-Institut für Festkörperelektronik (PDI) hat gemeinsam mit Kollegen aus China und Spanien gezeigt, dass Rauschen räumliche und zeitliche Ordnung in nichtlinearen Systemen verursachen kann. Dieser Effekt könnte in Zukunft dazu verwendet werden, stark verrauschte Signale zu identifizieren. Umgekehrt könnten auch Signale in einen verrauschten Hintergrund eingebettet und damit verschlüsselt werden, um sie später zurückzugewinnen.

Die Resultate wurden in zwei aufeinanderfolgenden Manuskripten in Physical Review Letters veröffentlicht – das eine konzentriert sich auf die experimentelle Untersuchung [121, 086806 (2018)], während das zweite die theoretische Untersuchung auf der Basis von numerischen Simulationen vorstellt [121, 086805 (2018)].

Rauschen ist normalerweise eine Störung, die für praktische Anwendungen vermieden bzw. minimiert wird. Allerdings kann es manchmal eine konstruktive Rolle übernehmen, um verwendbare Resultate zu erzielen. Wenn das Rauschen zusammen mit periodischen Oszillationen kleiner Amplitude an ein nichtlineares System angelegt wird, können sehr diffizile Effekte auftreten.

Rauschen kann ein stationäres System in einen schwingenden Zustand mit kohärenten Selbstoszillationen des Stromes mit abstimmbaren Frequenzen zwischen 0 und 100 MHz treiben, den man als kohärente Resonanz bezeichnet.

Indem man zum Rauschen periodische Oszillationen kleiner Amplitude mit einer Frequenz nahe der der Stromselbstoszillationen hinzufügt, wird das nichtlineare System mit der kohärenten Resonanz phasenverriegelt, was stochastische Resonanz genannt wird. Diese stochastische Resonanz kann als passiver Lock-In-Verstärker verwendet werden, der kein Referenzsignal benötigt und der sehr viel kürzere Integrationszeiten als konventionelle Lock-In-Verstärker erlaubt.

Bisher basieren alle Methoden für die Detektion schwacher Signale auf der Korrelation mit einem bekannten Referenzsignal. Deshalb ist es unmöglich, unbekannte Signale, die in einem Hintergrund mit starkem Rauschen verborgen sind, zu identifizieren.

Typische Lock-In-Verstärker benötigen ein Referenzsignal im Bereich von einigen zehn Hz bis in den MHz-Bereich und Integrationszeiten in der Größenordnung von Millisekunden. Der umfangreiche Frequenzbereich der kohärenten Resonanz erlaubt einen Betrieb ohne jegliches Referenzsignal und eine außerordentliche Verringerung der Integrationszeit zur Verarbeitung des Signals.

Das Forscherteam hat das Auftreten der kohärenten und stochastischen Resonanz in einem dotieren, schwach gekoppelten GaAs/(Al,Ga)As-Übergitter mit 45% Al bei Zimmertemperatur nachgewiesen. Die parallel durchgeführten numerischen Simulationen des Elektronentransports auf der Basis eines diskreten Modells unter Verwendung des sequentiellen Tunneleffekts geben diese Resultate qualitativ sehr gut wieder. Zusätzlich kann das theoretische Modell dazu verwendet werden, den bauelement-abhängigen kritischen Strom für die kohärente Resonanz direkt aus den experimentellen Ergebnissen zu bestimmen.

Paul-Drude-Institut für Festkörperelektronik
Prof. Dr. Holger Grahn
E-Mail: htgrahn@pdi-berlin.de
Tel.: +49 (0)30 20377-318

DOI: 10.1103/PhysRevLett.121.086805
DOI: 10.1103/PhysRevLett.121.086806

Media Contact

Gesine Wiemer Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer