Metall-Isolator-Materialien verstehen: Die Wirkung des heißen Elektrons

Elektronenbeugungsmuster der Probe (Farben nachträglich hinzugefügt). N. Rothenbach et al., Phys. Rev. B 100 (2019)

Laptops und Server – sie wären zum Hitzetod verurteilt, gäbe es nicht energiefressende und voluminöse Technik, um die empfindlichen Schaltungen zu kühlen.

Ungewollte, bisher aber nicht vermeidbare Abwärme ist ein teures Problem. Verfolgt man ihre Ursache bis auf die atomare Ebene zurück, so landet man beim Elektron, das sich seinen Weg durch verschiedene Materialien bahnt. Aber wie genau?

Das haben UDE-Physiker vom Sonderforschungsbereich „Nichtgleichgewichtsdynamik kondensierter Materie in der Zeitdomäne“ untersucht. Dazu haben sie ein Material, das im Wechsel aus dünnen Schichten Metall (Eisen) und Isolator (Magnesiumoxid) besteht, mit einem Anrege-Abfrage-Verfahren untersucht:

Ein Laserpuls bringt Energie in das System ein, kurze Zeit später liest ein Röntgenstrahl in einer Momentaufnahme aus, wie sie sich in Form „heißer Elektronen“ im Material ausbreitet. „Wenn wir den zeitlichen Abstand beider Pulse gleichmäßig vergrößern, dann können wir den Prozess wie in einem Film verfolgen“, erklärt Experimentalphysikerin Dr. Andrea Eschenlohr.

Reaktion in einer billionstel Sekunde

Das Ergebnis: In weniger als einer Pikosekunde (0,000 000 000 001 s) regen die heißen Elektronen das Metallgitter an; fast gleichzeitig beginnt die Grenzfläche zwischen den Materialien zu schwingen. Eine weitere Pikosekunde später reagiert auch der Isolator.

„Letzteres hat uns überrascht“, so Eschenlohr. „Wir hätten nicht erwartet, dass diese Grenzflächenschwingungen so wichtig sind.“ Theoretische Simulationen bestätigten die Ergebnisse im Detail.

Im nächsten Schritt wollen die Physiker nun komplexere Systeme untersuchen und die Ergebnisse möglichst verallgemeinern. „Auf lange Sicht ließe sich so vielleicht ein genau abgestimmter Materialmix für verschiedene Aufgaben maßschneidern und das Problem mit der Abwärme lösen.“

Die Veröffentlichung entstand als Kooperation der Arbeitsgruppen von Prof. Dr. Uwe Bovensiepen, Prof. Dr. Rossitza Pentcheva und Prof. Dr. Heiko Wende.

Redaktion: Birte Vierjahn, Tel. 0203 37 9-8176, birte.vierjahn@uni-due.de

Dr. Andrea Eschenlohr, Tel. 0203 37 9-4531, andrea.eschenlohr@uni-due.de

N. Rothenbach, M. E. Gruner, K. Ollefs, C. Schmitz-Antoniak, S. Salamon, P. Zhou, R. Li, M. Mo, S. Park, X. Shen, S. Weathersby, J. Yang, X. J. Wang, R. Pentcheva, H. Wende, U. Bovensiepen, K. Sokolowski-Tinten, and A. Eschenlohr
Microscopic nonequilibrium energy transfer dynamics in a photoexcited metal/insulator heterostructure
Phys. Rev. B 100, 174301 (2019)
DOI: 10.1103/PhysRevB.100.174301

Media Contact

Birte Vierjahn idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-duisburg-essen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer