Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr als der erste Blick verrät: Neuer Katalog von Röntgenquellen aus überlagerten Beobachtungen

25.07.2018

Die Arbeitsgruppe Röntgenastrophysik des Leibniz-Instituts für Astrophysik Potsdam (AIP) hat zusammen mit einem internationalen Team den ersten Katalog von Röntgenquellen in mehrfach beobachteten Himmelsregionen veröffentlicht. Er enthält knapp 72.000 zum Teil exotische Objekte, die mit dem Weltraumteleskop XMM-Newton aufgenommen wurden. Das Nachschlagewerk informiert über physikalische Eigenschaften von Objekten und ermöglicht, Helligkeitsänderungen über Zeiträume von mehreren Jahren festzustellen – und enthält zudem einige tausend Neuentdeckungen.

„Je mehr Bilder man verwendet, umso deutlicher kommt das Motiv zum Vorschein“


Je länger belichtet, desto mehr ist zu sehen: links das Bild einer einzelnen Beobachtung, in der Mitte zehn und rechts neunzehn übereinandergelegte XMM-Newton-Beobachtungen derselben Himmelsregion.

AIP

Seit seinem Start vor über 18 Jahren hat der europäische Röntgensatellit XMM-Newton viele Himmelsbereiche wiederholt beobachtet. In der Arbeitsgruppe Röntgenastrophysik des AIP wurde nun eine neue Software entwickelt, um diese Überschneidung gezielt auszuwerten – und so der erste Katalog von Röntgenquellen in mehrfach beobachteten Himmelsregionen erstellt.

Indem man alle Beobachtungen zusammenfügt und gemeinsam auswertet, erreicht man eine höhere Genauigkeit und findet leuchtschwache Objekte, die in den einzelnen Beobachtungen nicht zu identifizieren sind.

"Das funktioniert nach einem ähnlichen Prinzip, wie wenn man mehrere transparente Fensterbilder mit dem gleichen Motiv übereinanderlegt: je mehr Bilder man verwendet, um so deutlicher kommt das Motiv zum Vorschein“, erläutert Projektmitarbeiterin Dr. Iris Traulsen.

Der neue Katalog, der sich aus insgesamt 1.789 Beobachtungen speist, umfasst 71.951 Röntgenquellen und beinhaltet vielfältige Informationen über deren physikalischen Eigenschaften. Mehrere Tausend davon sind neue Entdeckungen, viele so leuchtschwach, dass sie nur schwer aufzuspüren sind.

Außerdem lassen sich mit den Angaben im Katalog Helligkeitsänderungen von Röntgenobjekten über Zeiträume von bis zu 14,5 Jahren verfolgen. Projektleiter Dr. Axel Schwope betont: "Veränderungen der Röntgenhelligkeit sind ein entscheidendes Merkmal zum Aufspüren besonders exotischer Objekte am Himmel.

Um die Natur dieser neu entdeckten Exoten zu entschlüsseln, setzen wir unter anderem das Large Binocular Telescope (LBT) in Arizona ein." Das AIP beteiligt sich an Instrumentierung und Betrieb des LBT. Wissenschaftlerinnen und Wissenschaftler aus aller Welt nutzen die XMM-Newton-Kataloge, um zusätzliche Informationen über ihre Forschungsobjekte zu gewinnen und nach bisher unbekannten und seltenen Quellen von Röntgenstrahlung zu suchen.

Röntgenteleskope: Unsichtbares sichtbar machen

Beobachtungen mit Röntgenteleskopen erschließen Teile des Universums, die dem menschlichen Auge ansonsten verborgen blieben. Die relativ junge Technologie kommt erst seit etwa 50 Jahren zum Einsatz. Röntgenlicht entsteht in besonders energiereichen Prozessen, beispielsweise bei Temperaturen von Hunderten Millionen Grad.

Diese extremen Abläufe untersuchen Astronominnen und Astronomen unter anderem mithilfe des Weltraumteleskops XMM-Newton der ESA. Eine einzelne Beobachtung mit XMM-Newton deckt einen Himmelsbereich von der Fläche des Vollmonds ab.

Rund fünfzig bis einhundert Objekte, die Röntgenlicht abgeben, finden sich darin: beispielsweise besonders heiße oder extrem kompakte ausgebrannte Sterne, massereiche Schwarze Löcher in entfernten Milchstraßen sowie ganze Galaxienhaufen, deren Licht Jahrmilliarden unterwegs war.

Das XMM-Newton Survey Science Centre, ein Zusammenschluss von Wissenschaftlerinnen und Wissenschaftlern unter anderem in Frankreich, Spanien, Großbritannien und Deutschland, wertet jede öffentlich verfügbare XMM-Newton-Beobachtungen aus und veröffentlicht Kataloge aller darin gefundenen Objekte. Das AIP steuert dazu seit zwei Jahrzehnten die Software bei, mittels derer die Himmelsaufnahmen automatisiert nach Röntgenquellen abgesucht werden.

Wissenschaftliche Ansprechpartner:

Dr. Iris Traulsen, 0331-7499 286, itraulsen@aip.de

Originalpublikation:

https://arxiv.org/abs/1807.09178

Weitere Informationen:

https://www.aip.de/de/aktuelles/scientific-highlights/mehr-als-der-erste-blick-v...

Dr. Janine Fohlmeister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Faserverstärkte Verbundstoffe schnell und präzise durchleuchten
12.11.2019 | Paul Scherrer Institut (PSI)

nachricht Die Selbstorganisation weicher Materie im Detail verstehen
12.11.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics