Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus des Vielteilchentunnelprozesses erstmals exakt beschrieben

05.10.2012
Heidelberger Forscher decken grundlegende Unterschiede zum Einteilchentunnelprozess auf

Mit Forschungen zum Tunneleffekt, einem zentralen Effekt in der Quantenmechanik, ist es Wissenschaftlern der Universität Heidelberg gelungen, erstmals den Mechanismus des Vielteilchentunnelprozesses in den offenen Raum exakt zu beschrieben.

Zugleich konnte das Forscherteam unter der Leitung von Prof. Dr. Lorenz Cederbaum zeigen, worin die grundlegenden Unterschiede zum bereits gut erforschten Tunnelprozess einzelner Teilchen bestehen. Die Ergebnisse dieser in Zusammenarbeit mit israelischen Forschern durchgeführten Untersuchungen wurden in den „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht.

Aufgrund des Tunneleffektes können quantenmechanisch beschriebene Teilchen sogenannte Potentialbarrieren überwinden, ohne die dafür notwendige Energie zu besitzen – sie „tunneln“ also durch die Barriere. Im Gegensatz dazu ist für Teilchen der klassischen Mechanik nur ein „Klettern über die Barriere” möglich. Der Tunneleffekt tritt bei vielen verschiedenen Prozessen in der Natur auf.

Dazu gehören zum Beispiel Kernfusion, Kernspaltung und Alphazerfall in der Kernphysik sowie Ionisationsprozesse, Photoassoziation und Photodissoziation in der Biologie und Chemie. Diese Prozesse finden jedoch fast ausschließlich in Systemen statt, die aus vielen, miteinander wechselwirkenden Teilchen zusammengesetzt und offen sind.

Wie der Mechanismus von Tunnelprozessen in den offenen Raum bei Vielteilchensystemen aussieht, haben Axel Lode, Privatdozent Dr. Alexej Streltsov, Dr. Kaspar Sakmann und Prof. Dr. Lorenz Cederbaum vom Physikalich-Chemischen Institut der Ruperto Carola Universität Heidelberg untersucht. Kooperationspartner der Heidelberger Forscher war Prof. Dr. Ofir Alon von der Universität Haifa.

Der Tunnelprozess von einzelnen Teilchen ist in der Quantenmechanik seit Jahrzehnten gut verstanden – der Tunnelprozess vieler, miteinander wechselwirkender Teilchen jedoch kaum erforscht. Von Bedeutung ist hier vor allem die Frage, inwiefern durch die Wechselwirkung zwischen den Teilchen kooperative Phänomene verursacht werden, die bei einzelnen Teilchen nicht auftreten können. So haben die Wissenschaftler untersucht, wie der Tunnelprozess vieler wechselwirkender, ultrakalter Bosonen, die anfangs ein sogenanntes Bose-Einstein-Kondensat bilden, durch eine Potentialbarriere hindurch in den freien Raum abläuft. Ultrakalte Bosonen bieten sich zum Studium von Vielteilchenprozessen an, weil sowohl ihr externes Potential mittels Lasern als auch die Wechselwirkung mittels eines Magnetfeldes experimentell kontrolliert werden kann.

Eine der Kernfragen der Arbeit war es, herauszufinden, ob der gesamte Vielteilchentunnelprozess als das Tunneln eines einzigen, effektiven Teilchens beschreibbar ist oder ob dieser Prozess grundlegend anders abläuft. Die Wissenschaftler fanden mit Hilfe exakter numerischer Simulationen heraus, dass sogar schon bei schwacher Wechselwirkung im Vielteilchenprozess kollektive Phänomene auftreten. Dabei handelt es sich um eine Quanteninterferenz – ein spezielles Phänomen der Quantenmechanik – von gleichzeitig ablaufenden Einteilchentunnelprozessen, die von Quellen mit unterschiedlicher Teilchenzahl gespeist werden.
Dies zeigt sich durch eine Zunahme der Korrelation, das heißt der Wechselbeziehungen zwischen den anfänglich unkorrelierten Teilchen. Zugleich wiesen die Wissenschaftler damit nach, dass der Vielteilchenprozess nicht als Tunnelvorgang eines einzelnen effektiven Teilchens beschrieben werden kann. Die Beschreibung als effektiver Einteilchenprozess vernachlässigt die auftretenden kollektiven Phänomene und den Aufbau von Korrelationen.

Weitere Informationen und Videos sind im Internet unter http://MCTDHB.org und http://tc.uni-hd.de/axel zu finden.

Originalpublikation:
A. U. J. Lode, A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum: How an interacting many-body system tunnels through a potential barrier to open space. PNAS 2012, 109 (34), 13521-13525, doi: 10.1073/pnas.1201345109

Kontakt:
Prof. Dr. Lorenz Cederbaum
Physikalisch-Chemisches Institut
Telefon (06221) 54-5211
Lorenz.Cederbaum@pci.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics