Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus des Vielteilchentunnelprozesses erstmals exakt beschrieben

05.10.2012
Heidelberger Forscher decken grundlegende Unterschiede zum Einteilchentunnelprozess auf

Mit Forschungen zum Tunneleffekt, einem zentralen Effekt in der Quantenmechanik, ist es Wissenschaftlern der Universität Heidelberg gelungen, erstmals den Mechanismus des Vielteilchentunnelprozesses in den offenen Raum exakt zu beschrieben.

Zugleich konnte das Forscherteam unter der Leitung von Prof. Dr. Lorenz Cederbaum zeigen, worin die grundlegenden Unterschiede zum bereits gut erforschten Tunnelprozess einzelner Teilchen bestehen. Die Ergebnisse dieser in Zusammenarbeit mit israelischen Forschern durchgeführten Untersuchungen wurden in den „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht.

Aufgrund des Tunneleffektes können quantenmechanisch beschriebene Teilchen sogenannte Potentialbarrieren überwinden, ohne die dafür notwendige Energie zu besitzen – sie „tunneln“ also durch die Barriere. Im Gegensatz dazu ist für Teilchen der klassischen Mechanik nur ein „Klettern über die Barriere” möglich. Der Tunneleffekt tritt bei vielen verschiedenen Prozessen in der Natur auf.

Dazu gehören zum Beispiel Kernfusion, Kernspaltung und Alphazerfall in der Kernphysik sowie Ionisationsprozesse, Photoassoziation und Photodissoziation in der Biologie und Chemie. Diese Prozesse finden jedoch fast ausschließlich in Systemen statt, die aus vielen, miteinander wechselwirkenden Teilchen zusammengesetzt und offen sind.

Wie der Mechanismus von Tunnelprozessen in den offenen Raum bei Vielteilchensystemen aussieht, haben Axel Lode, Privatdozent Dr. Alexej Streltsov, Dr. Kaspar Sakmann und Prof. Dr. Lorenz Cederbaum vom Physikalich-Chemischen Institut der Ruperto Carola Universität Heidelberg untersucht. Kooperationspartner der Heidelberger Forscher war Prof. Dr. Ofir Alon von der Universität Haifa.

Der Tunnelprozess von einzelnen Teilchen ist in der Quantenmechanik seit Jahrzehnten gut verstanden – der Tunnelprozess vieler, miteinander wechselwirkender Teilchen jedoch kaum erforscht. Von Bedeutung ist hier vor allem die Frage, inwiefern durch die Wechselwirkung zwischen den Teilchen kooperative Phänomene verursacht werden, die bei einzelnen Teilchen nicht auftreten können. So haben die Wissenschaftler untersucht, wie der Tunnelprozess vieler wechselwirkender, ultrakalter Bosonen, die anfangs ein sogenanntes Bose-Einstein-Kondensat bilden, durch eine Potentialbarriere hindurch in den freien Raum abläuft. Ultrakalte Bosonen bieten sich zum Studium von Vielteilchenprozessen an, weil sowohl ihr externes Potential mittels Lasern als auch die Wechselwirkung mittels eines Magnetfeldes experimentell kontrolliert werden kann.

Eine der Kernfragen der Arbeit war es, herauszufinden, ob der gesamte Vielteilchentunnelprozess als das Tunneln eines einzigen, effektiven Teilchens beschreibbar ist oder ob dieser Prozess grundlegend anders abläuft. Die Wissenschaftler fanden mit Hilfe exakter numerischer Simulationen heraus, dass sogar schon bei schwacher Wechselwirkung im Vielteilchenprozess kollektive Phänomene auftreten. Dabei handelt es sich um eine Quanteninterferenz – ein spezielles Phänomen der Quantenmechanik – von gleichzeitig ablaufenden Einteilchentunnelprozessen, die von Quellen mit unterschiedlicher Teilchenzahl gespeist werden.
Dies zeigt sich durch eine Zunahme der Korrelation, das heißt der Wechselbeziehungen zwischen den anfänglich unkorrelierten Teilchen. Zugleich wiesen die Wissenschaftler damit nach, dass der Vielteilchenprozess nicht als Tunnelvorgang eines einzelnen effektiven Teilchens beschrieben werden kann. Die Beschreibung als effektiver Einteilchenprozess vernachlässigt die auftretenden kollektiven Phänomene und den Aufbau von Korrelationen.

Weitere Informationen und Videos sind im Internet unter http://MCTDHB.org und http://tc.uni-hd.de/axel zu finden.

Originalpublikation:
A. U. J. Lode, A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum: How an interacting many-body system tunnels through a potential barrier to open space. PNAS 2012, 109 (34), 13521-13525, doi: 10.1073/pnas.1201345109

Kontakt:
Prof. Dr. Lorenz Cederbaum
Physikalisch-Chemisches Institut
Telefon (06221) 54-5211
Lorenz.Cederbaum@pci.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Simulierte Synapsen - TU-Forscher berechnen das neuronale Netz des Gehirns
24.06.2019 | Technische Universität Darmstadt

nachricht Partielle Mondfinsternis am 16./17. Juli 2019
24.06.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Molekulare Schere stabilisiert das Zell-Zytoskelett

24.06.2019 | Biowissenschaften Chemie

Neues „Intelligent Edge Data Center“ bringt Smart Industries auf nächstes Level

24.06.2019 | Unternehmensmeldung

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics