Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018

Die Quantentheorie bildet die Grundlage der modernen Physik. Eine konsistente quantenmechanische Theorie der Gravitation bleibt trotz intensiver Bemühungen eines der großen offenen Probleme der theoretischen Physik. Der Kern des Problems besteht darin, dass auch die Raumzeit eine Quantenstruktur aufweisen muss, für die erst geeignete mathematische Modelle und Theorien entwickelt werden müssen. Wissenschafter der Universität Wien um Harold Steinacker erforschen daher die sogenannte Matrix-Theorie als Alternative zur Stringtheorie, um u.a. einen möglichen Mechanismus für den Big Bang zu beschreiben und publizieren dazu im Fachjournal "Physics Letters B".

Harold Steinacker hat im Rahmen eines vom FWF geförderten Projekts an der Universität Wien eine Lösung dieser Matrix-Theorie gefunden, die nicht nur eine plausible kosmologische Raumzeit beschreibt, sondern zugleich einen möglichen Mechanismus für den Urknall und eine mögliche Antwort auf die Frage nach der Zeit "davor" bietet.


Schematische Illustration der quantisierten kosmologischen Raumzeit, mit Big Bang (BB), Zeitrichtung (t) und Raumrichtung (x).

Copyright: Harold Steinacker

"In unserem Modell signalisiert der Big Bang den Anfang der Zeit, der Raum erstreckt sich aber auch 'davor', wobei die Zeit-Dimension als raumartige Dimension erscheint", erklärt Steinacker. Vor dem Big Bang gibt es in dieser Lösung somit keine Zeitentwicklung, sehr wohl aber einen vierdimensionalen Raum. Der Beginn der Zeit geht mit einer explosionsartigen Ausdehnung einher, die sich später in die wohlbekannte kosmische Expansion verlangsamt.

Die zugrundeliegenden Matrix-Modelle wurden 1996 von japanischen und US-amerikanischen PhysikerInnen eingeführt und sind verwandt mit der Stringtheorie. Dabei sind alle physikalischen Objekte und deren Dynamik in wenigen Matrizen codiert und beschrieben, insbesondere auch die Raumzeit und deren Geometrie.

Die Modelle ermöglichen es, tiefliegende Fragen z.B. über die Quantenstruktur der Raumzeit oder die Zahl der Dimensionen unserer Raumzeit zu untersuchen. Eines dieser Modelle steht im Fokus einer Forschergruppe um Harold Steinacker.

Um die Tragfähigkeit des Modells zu klären, mussten die Physiker Modelle finden, die die wesentlichen Eigenschaften der kosmologischen Raumzeit aufweisen. "Unsere Lösungen kommen der beobachteten Kosmologie zumindest nahe. Somit können auch tiefer gehende Fragen nach der Struktur von Raum und Zeit im Rahmen von Matrix-Modellen sinnvoll gestellt und untersucht werden", erklärt Steinacker.

Die gefundenen Lösungen stellen allerdings nur eine Ausgangsbasis dar. Die daraus resultierenden detaillierten physikalischen Vorhersagen müssen weiter dahingehend untersucht werden, ob und wie weit sich darin die bekannte Physik wiederfindet. "Die wesentlichen Bausteine dafür sind im Modell vorhanden, dennoch muss das diskutierte Szenario derzeit noch als spekulativ bezeichnet werden", sagt der Physiker. Langfristiges Ziel ist es, darauf aufbauend weitergehende Vorhersagen treffen und überprüfen zu können. Die aktuelle Lösung bietet dafür jedenfalls einen vielversprechenden Ausgangspunkt.

Quanten-Geometrie
Grundlage für diese Entwicklungen sind neue mathematische Methoden der Quanten-Geometrie, welche in den vergangenen Jahren insbesondere an der Universität Wien entwickelt und adaptiert wurden. Der Zugang über Matrix-Modelle ermöglicht es dabei, Ideen der Stringtheorie aufzugreifen, deren Probleme aber zu vermeiden. Bis zu einem hinreichenden Verständnis dieser Matrix-Modelle und ihrer physikalischen Tragweite bleibt aber noch viel zu tun.

Publikation in "Physics Letters B":
H. C. Steinacker,"Quantized open FRW cosmology from Yang-Mills matrix models“.
Physics Letters B. Volume 782, 10 July 2018, pages 176-180
https://doi.org/10.1016/j.physletb.2018.05.011

Diese Publikation wurde als Open Access veröffentlicht. Sie ist unter folgendem Link abrufbar:
https://www.sciencedirect.com/science/article/pii/S0370269318303757

Wissenschaftlicher Kontakt
Mag. Harold C Steinacker, PhD
Fakultät für Physik, Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-4277-515 26
harold.steinacker@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Berichte zu: Big Bang FWF Kosmologie Physik Raumzeit Stringtheorie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetisches Tuning auf der Nanoskala
11.11.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Die Selbstorganisation weicher Materie im Detail verstehen
11.11.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Im Focus: Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Effizienz-Weltrekord für organische Solarmodule aufgestellt

11.11.2019 | Energie und Elektrotechnik

Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien

11.11.2019 | Biowissenschaften Chemie

Forschungsprojekt kombiniert Digitalisierung und Verfahrenstechnik

11.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics