Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017

Forschergruppe der Leibniz Universität Hannover experimentiert mit Bose-Einstein Kondensaten auf Forschungsrakete

Ein Bose-Einstein Kondensat in der Schwerelosigkeit: Erstmals haben deutsche Wissenschaftlerinnen und Wissenschaftler am 23. Januar 2017 unter Federführung der Leibniz Universität Hannover an Bord einer Forschungsrakete Interferenzexperimente mit „gebändigten“ ultrakalten Materiewellen, so genannten Bose-Einstein Kondensaten (BEK), durchgeführt.


Atomchip zur Kühlung von Atomen

Copyright: J. Matthias

Hierzu wurden Rubidium-Atome mittels einer Kühlung durch Laserlicht und anderer atom-optischer Methoden in einen extrem niedrigen Energiezustand überführt, der weniger als einem Millionstel Grad über dem absoluten Nullpunkt entspricht. Unter diesen Bedingungen bildet eine Wolke aus mehreren zehntausend Atomen einen neuen Materiezustand – ein Bose-Einstein-Kondensat.

Eine besondere Eigenschaft dieses Zustands ist sein makroskopischer Wellencharakter – die ultrakalte Atomwolke zeigt Interferenzphänomene ähnlich wie Laserlicht. Diese Überlagerung von Wellen ist prinzipiell in einem atom-optischen Instrument wie einem Materiewellen-Interferometer für Präzisionsmessungen nutzbar.

Auf dem Weg zum ersten Weltraum-Experiment mit BEKs waren viele technische Herausforderungen zu überwinden, da diese Materiewellen empfindlich auf Umwelteinflüsse wie Vibrationen und Magnetfelder reagieren und daher ihre kohärente Entwicklung im freien Fall auf der Erde nur über kurze Zeiten beobachtet werden kann.

Ziel der MAIUS-1-Raketenmission war es daher, die Machbarkeit eines BEKs in einer miniaturisierten und robusten Apparatur im Weltraumeinsatz erstmalig zu demonstrieren und zu erforschen. Der Raketenflug ermöglicht es, letztendlich in etwa hundert Experimenten Methoden zur Manipulation von Quantenmaterie und BEK-Interferometrie durchzuführen. Dies erforderte schwerelose Bedingungen wie bei einem Raketenflug.

Die Rakete MAIUS-1 (Materiewellen-Interferometrie unter Schwerelosigkeit) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) startete am 23. Januar um 3.30 Uhr morgens vom schwedischen Startplatz ESRANGE in der Nähe der Stadt Kiruna nördlich des Polarkreises und flog bis zu einer Höhe von 243 Kilometern. Ein Team aus Wissenschaftlerinnen und Wissenschaftlern, Ingenieuren und Technikern von insgesamt elf deutschen Universitäten, darunter Holger Ahlers, Dennis Becker, Maike Lachmann, Dr. Thijs Wendrich und Dr. Stephan Seidel von der Leibniz Universität Hannover, und anderen Forschungseinrichtungen sowie der schwedische Startplatzbetreiber überwachten die autonom operierende Nutzlast sowie den Flug der Rakete vom Boden aus. Während der antriebslosen Flugphase oberhalb von etwa 100 Kilometern bis zum Scheitelpunkt und zurück standen sechs Minuten Experimentierzeit bei schwerelosen Bedingungen zur Verfügung.

Bereits die Sofortanalyse der während des Fluges übermittelten Daten ließ das Forscherteam jubeln, als feststand, dass eines der wesentlichen Experimentziele erreicht worden war: Es war gelungen, erstmalig BEKs im All zu erzeugen. Die Landung der technologisch und wissenschaftlich höchst anspruchsvollen Nutzlast erfolgte ebenfalls planmäßig an einem Fallschirmsystem im tief verschneiten Nordschweden.

Nach Jahren intensiver Vorbereitung der Mission wird die Auswertung der zahlreichen Experimente die Wissenschaftlerinnen und Wissenschaftler in den nächsten Wochen und Monaten weiter in Atem halten. Sie dienten der Beobachtung des Phasenübergangs der Kondensation sowie der Analyse der Evolution der BEKs während des ausgedehnten freien Falls mittels der Atominterferometrie. Die dabei entstehenden Erkenntnisse sollen in die Entwicklung neuer Methoden eingehen, wie sie für zukünftige Weltraummissionen notwendig sind.

Konventionelle Apparaturen benötigen zur Erzeugung von Bose-Einstein Kondensaten bis zu einer Minute und füllen gewöhnlich ein ganzes Labor. Eine wichtige Voraussetzung für die MAIUS Mission ist daher die Erzeugung von BEKs mit Atomchips, mit denen auf kleinstem Raum Atome gebändigt werden können. Atomchips erlauben die Erzeugung magnetischer Felder zum Einschluss der Atome mit Hilfe planerer Stromkreise auf kleinstem Raum auf einem Substrat und wurden insbesondere von Nobelpreisträger Theodor Hänsch sowie Jakob Reichel und Jörg Schmiedmayer entwickelt.

Sie waren der Ausgangspunkt für die Atomchip-basierte BEK Interferometer, die an der Leibniz Universität Hannover am Institut für Quantenoptik in der Gruppe von Prof. Dr. Ernst M. Rasel und Prof. Dr. Wolfgang Ertmer in engster Kooperation mit dem Theoretiker Prof. Dr. Wolfgang Schleich in Ulm erforscht werden. Mit dem auf MAIUS-1 eingesetzten Atomchip lassen sich BEKs von mehreren hunderttausend Atomen in weniger als zwei Sekunden erzeugen. Experimente am Fallturm in Bremen erlaubten deutschen Wissenschaftlern, Methoden für die BEK Interferometrie unter Schwerelosigkeit zu erkunden. So wurde der Weg zur MAIUS-Mission geebnet.

Im terrestrischen Laboraufbau lassen sich BEKs nur etwa hundert Millisekunden im freien Fall aufrechterhalten und manipulieren. Dazu wird ein freier Fall der kondensierten Atomwolke in einer evakuierten Apparatur über wenige Zentimeter genutzt - die Atome erfahren dabei kurzzeitige Schwerelosigkeit. In den vergangenen Jahren gelang es deutschen Forschern im Fallturm Bremen, BEKs über eine Zeitspanne von etwa zwei Sekunden in der Schwerelosigkeit zu erzeugen und zu untersuchen. Dabei wurde der freie Fall einer speziellen Apparatur namens QUANTUS in der evakuierten Turmröhre über eine Strecke von etwa 110 Metern realisiert. Der freie Fall der MAIUS-1 Rakete von mehreren Minuten auf einer langen ballistischen Flugbahn eröffnete den Wissenschaftlern den ersehnten größeren Spielraum, um in experimentelles Neuland vorzudringen.

Der Reiz, ein BEK möglichst lange aufrecht zu erhalten, hat auch einen wichtigen Anwendungsaspekt. Die Empfindlichkeit eines Atominterferometers wächst nämlich quadratisch mit der freien Fallzeit von BEKs in einem solchen Messgerät. So ist es nicht verwunderlich, dass bereits über lang andauernde Missionen von Weltraumsatelliten nachgedacht wird, um mittels Quantenmaterie das Einsteinsche Äquivalenzprinzip von schwerer und träger Masse - einem Eckpfeiler unseres physikalischen Weltbildes - wesentlich genauer als bisher zu überprüfen. Auch der Einsatz von Quantensensoren in Satelliten für eine präzisere Geodäsie und Navigation wird schon diskutiert.

Das Projekt MAIUS-1 steht unter wissenschaftlicher Leitung der Leibniz Universität Hannover im Verbund mit der Humboldt-Universität und dem Ferdinand-Braun-Institut in Berlin, dem ZARM der Universität Bremen, der Johannes Gutenberg-Universität Mainz, der Universität Hamburg, der Universität Ulm und der Technischen Universität Darmstadt. Dem Forschungsverbund gehörten auch die Institute für Raumfahrtsysteme des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Bremen, für Raumflugbetrieb und Astronautentraining - hier die Mobile Raketenbasis MORABA - in Oberpfaffenhofen sowie die DLR Einrichtung für Simulations- und Softwaretechnik in Braunschweig an. Die interdisziplinäre Zusammenarbeit von Studierenden, vielen jungen Wissenschaftlern und Ingenieuren sowie Hochschullehrenden betraf alle Subsysteme der Nutzlast, von der Atomchipapparatur über die Laser, die Elektronik, die Datenspeicherung, die magnetische Abschirmung, die Batterien bis hin zur Flugsoftware. Die Rakete wurde in einer zweistufigen Konfiguration eingesetzt mit Feststoffmotoren aus brasilianischer Produktion. Die Durchführung der Startkampagne oblag der DLR-MORABA.

Das Projekt wurde vom DLR-Raumfahrtmanagement in Bonn mit Mitteln des Bundesministeriums für Wirtschaft und Energie gefördert. Nach einer detaillierten Auswertung der Experimentdaten ist die nächste Raketenmission bereits für 2018 geplant. Sie dient der Erforschung von Bose-Einstein Kondensaten zweier Atomsorten (neben Rubidium auch Kalium) in einem Interferometer, einem notwendigen Zwischenschritt zum Test des Einsteinschen Äquivalenzprinzips mit Materiewellen. Darüber hinaus sind die MAIUS-Raketenmission und die QUANTUS-Experimente im Bremer Fallturm unter langjähriger Betreuung von Rainer Kuhl und seinem Nachfolger Thomas Driebe aus dem DLR-Raummanagement ein wichtiges Bindeglied für die ab 2017 in Kooperation mit der NASA geplanten Experimente zu ultrakalten Atomen auf der Internationalen Raumstation, an denen die deutschen Wissenschaftler maßgeblich beteiligt sind.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Dr. Ernst M. Rasel, Institut für Quantenoptik der Leibniz Universität Hannover, unter Telefon +49 511 762 19203 oder per E-Mail unter rasel@iqo.uni-hannover.de gern zur Verfügung.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics