Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017

Forschergruppe der Leibniz Universität Hannover experimentiert mit Bose-Einstein Kondensaten auf Forschungsrakete

Ein Bose-Einstein Kondensat in der Schwerelosigkeit: Erstmals haben deutsche Wissenschaftlerinnen und Wissenschaftler am 23. Januar 2017 unter Federführung der Leibniz Universität Hannover an Bord einer Forschungsrakete Interferenzexperimente mit „gebändigten“ ultrakalten Materiewellen, so genannten Bose-Einstein Kondensaten (BEK), durchgeführt.


Atomchip zur Kühlung von Atomen

Copyright: J. Matthias

Hierzu wurden Rubidium-Atome mittels einer Kühlung durch Laserlicht und anderer atom-optischer Methoden in einen extrem niedrigen Energiezustand überführt, der weniger als einem Millionstel Grad über dem absoluten Nullpunkt entspricht. Unter diesen Bedingungen bildet eine Wolke aus mehreren zehntausend Atomen einen neuen Materiezustand – ein Bose-Einstein-Kondensat.

Eine besondere Eigenschaft dieses Zustands ist sein makroskopischer Wellencharakter – die ultrakalte Atomwolke zeigt Interferenzphänomene ähnlich wie Laserlicht. Diese Überlagerung von Wellen ist prinzipiell in einem atom-optischen Instrument wie einem Materiewellen-Interferometer für Präzisionsmessungen nutzbar.

Auf dem Weg zum ersten Weltraum-Experiment mit BEKs waren viele technische Herausforderungen zu überwinden, da diese Materiewellen empfindlich auf Umwelteinflüsse wie Vibrationen und Magnetfelder reagieren und daher ihre kohärente Entwicklung im freien Fall auf der Erde nur über kurze Zeiten beobachtet werden kann.

Ziel der MAIUS-1-Raketenmission war es daher, die Machbarkeit eines BEKs in einer miniaturisierten und robusten Apparatur im Weltraumeinsatz erstmalig zu demonstrieren und zu erforschen. Der Raketenflug ermöglicht es, letztendlich in etwa hundert Experimenten Methoden zur Manipulation von Quantenmaterie und BEK-Interferometrie durchzuführen. Dies erforderte schwerelose Bedingungen wie bei einem Raketenflug.

Die Rakete MAIUS-1 (Materiewellen-Interferometrie unter Schwerelosigkeit) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) startete am 23. Januar um 3.30 Uhr morgens vom schwedischen Startplatz ESRANGE in der Nähe der Stadt Kiruna nördlich des Polarkreises und flog bis zu einer Höhe von 243 Kilometern. Ein Team aus Wissenschaftlerinnen und Wissenschaftlern, Ingenieuren und Technikern von insgesamt elf deutschen Universitäten, darunter Holger Ahlers, Dennis Becker, Maike Lachmann, Dr. Thijs Wendrich und Dr. Stephan Seidel von der Leibniz Universität Hannover, und anderen Forschungseinrichtungen sowie der schwedische Startplatzbetreiber überwachten die autonom operierende Nutzlast sowie den Flug der Rakete vom Boden aus. Während der antriebslosen Flugphase oberhalb von etwa 100 Kilometern bis zum Scheitelpunkt und zurück standen sechs Minuten Experimentierzeit bei schwerelosen Bedingungen zur Verfügung.

Bereits die Sofortanalyse der während des Fluges übermittelten Daten ließ das Forscherteam jubeln, als feststand, dass eines der wesentlichen Experimentziele erreicht worden war: Es war gelungen, erstmalig BEKs im All zu erzeugen. Die Landung der technologisch und wissenschaftlich höchst anspruchsvollen Nutzlast erfolgte ebenfalls planmäßig an einem Fallschirmsystem im tief verschneiten Nordschweden.

Nach Jahren intensiver Vorbereitung der Mission wird die Auswertung der zahlreichen Experimente die Wissenschaftlerinnen und Wissenschaftler in den nächsten Wochen und Monaten weiter in Atem halten. Sie dienten der Beobachtung des Phasenübergangs der Kondensation sowie der Analyse der Evolution der BEKs während des ausgedehnten freien Falls mittels der Atominterferometrie. Die dabei entstehenden Erkenntnisse sollen in die Entwicklung neuer Methoden eingehen, wie sie für zukünftige Weltraummissionen notwendig sind.

Konventionelle Apparaturen benötigen zur Erzeugung von Bose-Einstein Kondensaten bis zu einer Minute und füllen gewöhnlich ein ganzes Labor. Eine wichtige Voraussetzung für die MAIUS Mission ist daher die Erzeugung von BEKs mit Atomchips, mit denen auf kleinstem Raum Atome gebändigt werden können. Atomchips erlauben die Erzeugung magnetischer Felder zum Einschluss der Atome mit Hilfe planerer Stromkreise auf kleinstem Raum auf einem Substrat und wurden insbesondere von Nobelpreisträger Theodor Hänsch sowie Jakob Reichel und Jörg Schmiedmayer entwickelt.

Sie waren der Ausgangspunkt für die Atomchip-basierte BEK Interferometer, die an der Leibniz Universität Hannover am Institut für Quantenoptik in der Gruppe von Prof. Dr. Ernst M. Rasel und Prof. Dr. Wolfgang Ertmer in engster Kooperation mit dem Theoretiker Prof. Dr. Wolfgang Schleich in Ulm erforscht werden. Mit dem auf MAIUS-1 eingesetzten Atomchip lassen sich BEKs von mehreren hunderttausend Atomen in weniger als zwei Sekunden erzeugen. Experimente am Fallturm in Bremen erlaubten deutschen Wissenschaftlern, Methoden für die BEK Interferometrie unter Schwerelosigkeit zu erkunden. So wurde der Weg zur MAIUS-Mission geebnet.

Im terrestrischen Laboraufbau lassen sich BEKs nur etwa hundert Millisekunden im freien Fall aufrechterhalten und manipulieren. Dazu wird ein freier Fall der kondensierten Atomwolke in einer evakuierten Apparatur über wenige Zentimeter genutzt - die Atome erfahren dabei kurzzeitige Schwerelosigkeit. In den vergangenen Jahren gelang es deutschen Forschern im Fallturm Bremen, BEKs über eine Zeitspanne von etwa zwei Sekunden in der Schwerelosigkeit zu erzeugen und zu untersuchen. Dabei wurde der freie Fall einer speziellen Apparatur namens QUANTUS in der evakuierten Turmröhre über eine Strecke von etwa 110 Metern realisiert. Der freie Fall der MAIUS-1 Rakete von mehreren Minuten auf einer langen ballistischen Flugbahn eröffnete den Wissenschaftlern den ersehnten größeren Spielraum, um in experimentelles Neuland vorzudringen.

Der Reiz, ein BEK möglichst lange aufrecht zu erhalten, hat auch einen wichtigen Anwendungsaspekt. Die Empfindlichkeit eines Atominterferometers wächst nämlich quadratisch mit der freien Fallzeit von BEKs in einem solchen Messgerät. So ist es nicht verwunderlich, dass bereits über lang andauernde Missionen von Weltraumsatelliten nachgedacht wird, um mittels Quantenmaterie das Einsteinsche Äquivalenzprinzip von schwerer und träger Masse - einem Eckpfeiler unseres physikalischen Weltbildes - wesentlich genauer als bisher zu überprüfen. Auch der Einsatz von Quantensensoren in Satelliten für eine präzisere Geodäsie und Navigation wird schon diskutiert.

Das Projekt MAIUS-1 steht unter wissenschaftlicher Leitung der Leibniz Universität Hannover im Verbund mit der Humboldt-Universität und dem Ferdinand-Braun-Institut in Berlin, dem ZARM der Universität Bremen, der Johannes Gutenberg-Universität Mainz, der Universität Hamburg, der Universität Ulm und der Technischen Universität Darmstadt. Dem Forschungsverbund gehörten auch die Institute für Raumfahrtsysteme des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Bremen, für Raumflugbetrieb und Astronautentraining - hier die Mobile Raketenbasis MORABA - in Oberpfaffenhofen sowie die DLR Einrichtung für Simulations- und Softwaretechnik in Braunschweig an. Die interdisziplinäre Zusammenarbeit von Studierenden, vielen jungen Wissenschaftlern und Ingenieuren sowie Hochschullehrenden betraf alle Subsysteme der Nutzlast, von der Atomchipapparatur über die Laser, die Elektronik, die Datenspeicherung, die magnetische Abschirmung, die Batterien bis hin zur Flugsoftware. Die Rakete wurde in einer zweistufigen Konfiguration eingesetzt mit Feststoffmotoren aus brasilianischer Produktion. Die Durchführung der Startkampagne oblag der DLR-MORABA.

Das Projekt wurde vom DLR-Raumfahrtmanagement in Bonn mit Mitteln des Bundesministeriums für Wirtschaft und Energie gefördert. Nach einer detaillierten Auswertung der Experimentdaten ist die nächste Raketenmission bereits für 2018 geplant. Sie dient der Erforschung von Bose-Einstein Kondensaten zweier Atomsorten (neben Rubidium auch Kalium) in einem Interferometer, einem notwendigen Zwischenschritt zum Test des Einsteinschen Äquivalenzprinzips mit Materiewellen. Darüber hinaus sind die MAIUS-Raketenmission und die QUANTUS-Experimente im Bremer Fallturm unter langjähriger Betreuung von Rainer Kuhl und seinem Nachfolger Thomas Driebe aus dem DLR-Raummanagement ein wichtiges Bindeglied für die ab 2017 in Kooperation mit der NASA geplanten Experimente zu ultrakalten Atomen auf der Internationalen Raumstation, an denen die deutschen Wissenschaftler maßgeblich beteiligt sind.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Dr. Ernst M. Rasel, Institut für Quantenoptik der Leibniz Universität Hannover, unter Telefon +49 511 762 19203 oder per E-Mail unter rasel@iqo.uni-hannover.de gern zur Verfügung.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

nachricht Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert
19.11.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungsnachrichten

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungsnachrichten

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics