Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetwirbel-Antennen für drahtlose Datenwege

06.05.2013
Dreidimensionale Magnetwirbel entdeckten Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Paul Scherrer Instituts (PSI) im Rahmen einer internationalen Kooperation.

Die Ergebnisse wurden in der Fachzeitschrift „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.110.177201). Wirbelzustände sind mögliche Antennen für die ultraschnelle, drahtlose Datenübertragung der Zukunft.


Zwischen zwei magnetischen Schichten bilden sich um eine nichtmagnetische Zwischenschicht herum statische dreidimensionale Magnetwirbel. Sie stabilisieren die Magnetisierungsrichtung im Wirbelkern in der Mitte – eine Voraussetzung für stabile Wirbelantennen für die drahtlose Datenübertragung. Foto: HZDR / Sander Münster 3Dkosmos

„Magnetische Wirbelzustände wurden bisher nur in zwei Dimensionen, also innerhalb einer Fläche, beobachtet“, erklärt Sebastian Wintz, Physiker am Helmholtz-Zentrum Dresden-Rossendorf. Sie treten typischerweise in nanometerkleinen Magnetscheiben auf.

In einer Kooperation untersuchte Wintz nun mit Kollegen des Schweizerischen Paul Scherrer Instituts dreidimensionale magnetische Schichtsysteme: Die Forscher stapelten jeweils zwei Magnetscheiben, getrennt durch eine dünne nichtmagnetische Metallschicht, übereinander. Der spezielle Aufbau führt dazu, dass sich alle um die Zwischenschicht herumliegenden Magnete zu gleichgerichteten, dreidimensionalen Wirbeln anordnen – eine vollkommen neue Beobachtung.

Die Magnetwirbel helfen den Forschern, magnetische Materialien grundlegend besser zu verstehen. Sie bieten aber auch vielversprechende Anwendungen, zum Beispiel in der Informations- und Kommunikationstechnologie. „Die dreidimensionalen Magnetwirbel könnten stabile und leistungsstarke Antennen für die ultraschnelle, drahtlose Übertragung von Informationen ermöglichen, zum Beispiel beim Mobilfunk oder W-Lan“, sagt Wintz. Warum das so ist, verrät ein genauerer Blick in eine einzelne Magnetscheibe sowie das am HZDR hergestellte magnetische Schichtsystem.

In einer Magnetscheibe sind alle Magnete – wie einzelne Stabmagnete hintereinander – im Kreis angeordnet. Auch wenn sich die Magnete nicht bewegen, sprechen Wissenschaftler von Magnetwirbeln, eben „statischen“. In der Mitte der Magnetscheiben, dem Wirbelkern, können sich die Magnete nicht weiter im Kreis ausrichten; sie zeigen aus ihm heraus, entweder nach oben oder nach unten. Ein solcher Magnetwirbel eignet sich als Antenne für die drahtlose Datenübertragung: Legt man einen Gleichstrom an, fängt der Wirbelkern an, sich im Kreis zu drehen. Dabei strahlt er charakteristische elektromagnetische Wellen ab. Wird die Geschwindigkeit aber zu hoch, wird das System instabil, die Magnetisierungsrichtung klappt um und die Funkwelle wird unterbrochen. Die Magnete im Wirbelkern richten sich nun in entgegengesetzter Richtung aus, beginnen wieder sich zu drehen und senden erneut Wellen aus – bis die Geschwindigkeit wieder zu hoch wird. Eine kontinuierliche Datenübertragung ist damit also nicht möglich.

Das ist anders, wenn man zwei Magnetscheiben, getrennt durch eine dünne nichtmagnetische Metallschicht, übereinander stapelt. Die Struktur ist extrem flach; jede Magnetscheibe ist ca. zehn Nanometer dick und hat einen Durchmesser von etwa 500 Nanometern. Die Zwischenschicht kann dazu führen, dass in jeder Magnetscheibe die Magnete nicht genau im Kreis zeigen, sondern entweder leicht Richtung Wirbelkern geneigt sind oder nach außen. Je näher die Magnete an der Metallschicht liegen, desto mehr sind sie außerdem in Richtung dieser Barriere gekippt. Und zwar so, dass alle – sowohl über als auch unter der Zwischenschicht – in die gleiche Richtung zeigen: Die Magnete bilden zwischen Kern und äußerem Rand einen statischen, dreidimensionalen Wirbel um die Metallschicht herum.

Da die Magnete ganz innen fast senkrecht liegen und benachbarte Magnete immer in die gleiche Richtung zeigen, sind auch die senkrecht stehenden Magnete in den Wirbelkernen zweier übereinanderliegender Magnetscheiben stets gleich ausgerichtet: Sie folgen dabei der Richtung des Magnetwirbels. Ein einfaches Umklappen der Magnete ist dadurch nicht mehr möglich. „Die dreidimensionalen Magnetwirbel stabilisieren die Magnetisierung im Wirbelkern. Magnetische Schichtsysteme, wie die von uns hergestellten, eignen sich deshalb vermutlich für Wirbelantennen besser als vergleichbare Einzelschichten“, fasst Sebastian Wintz zusammen. Selbst bei hohen Drehgeschwindigkeiten bleibt die magnetische Richtung im Wirbelkern so erhalten. „Es ist denkbar, Frequenzen von mehr als einem Gigahertz, also eine Milliarde Umdrehungen pro Sekunde, zu erreichen. In diesem Bereich arbeiten zum Beispiel W-Lan-Netze“, so Wintz weiter.

Um die Magnetscheiben mit hauchdünner metallischer Zwischenschicht herzustellen, nutzte er die Elektronenstrahl-Lithografie am HZDR. „Wir haben das seltene Metall Rhodium benutzt und schließlich die gewünschten Eigenschaften erreicht, indem wir die Dicke und Rauigkeit der Schichten verändert haben“. Die Magnetwirbel kamen an der Synchrotron Lichtquelle Schweiz (SLS) des Schweizerischen Paul Scherrer Instituts zum Vorschein. Synchrotronlicht ist eine besonders intensive Form von Licht, das in seinen Eigenschaften genau an die Bedürfnisse eines Experiments angepasst werden kann. Die Arbeitsgruppe von Jörg Raabe betreibt an der SLS ein Raster-Transmissions-Röntgen-Mikroskop, es kann Magnetisierungsrichtungen mit einer Auflösung von 20 Nanometern direkt abbilden und die Signale zweier verschiedener magnetischer Schichten voneinander trennen. Mit der gleichen Methode wollen die Forscher als nächstes das Verhalten der Magnetscheiben-Paare als hochfrequente Wirbelantennen untersuchen.
Publikation:
S. Wintz, C. Bunce, A. Neudert, M. Körner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, J. Fassbender, „Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements“, Phys. Rev. Lett. 110 (2013). DOI: 10.1103/PhysRevLett.110.177201
Weitere Informationen:

Helmholtz-Zentrum Dresden-Rossendorf
Institut für Ionenstrahlphysik und Materialforschung
Sebastian Wintz | Prof. Dr. Jürgen Faßbender, Institutsdirektor
Tel. 0351 260 2919 | Tel. 0351 260 2919
s.wintz@hzdr.de | j.fassbender@hzdr.de

Paul Scherrer Institut
Synchrotron Radiation and Nanotechnology
Dr. Jörg Raabe
Tel. +41 56310 5193
joerg.raabe@psi.ch
Medienkontakt:

Helmholtz-Zentrum Dresden-Rossendorf
Anja Weigl
Tel. 0351-260 2452 | a.weigl@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Paul Scherrer Institut
Dagmar Baroke
Verantwortliche für Kommunikation
Tel. +41 56310 2916
dagmar.baroke@psi.ch

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/presse/magnetwirbel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

nachricht MAGIC-Teleskope finden Entstehungsort von seltenem kosmischen Neutrino
13.07.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics