Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Surfer: Nanostrukturen können gezielt beeinflusst werden

05.09.2017

Effekt von akustischen Oberflächenwellen auf magnetische Nanostrukturen wird mit neuer Abbildungsmethode sichtbar gemacht

Auf dem Weg zur Entwicklung von winzigen, ultraschnellen Bauelementen für die Computer- und Kommunikationstechnik spielen die magnetischen Eigenschaften von Materialien und die Möglichkeit, diese Eigenschaften gezielt anzusteuern, eine wichtige Rolle.


Zwei Beispiele der Abbildung von Verformung und der resultierenden Magnetisierungskonfigurationen. Links: Bilder der Verformung durch eine Oberflächenwelle um ein magnetisches Element herum. Die Welle bewegt sich über das magnetische Quadrat hinweg (weiß, 2 μm Kantenlänge), und abhängig vom Zeitpunkt kann das Quadrat entweder im nicht verformten Zustand (oben) oder im verformten Zustand (unten) abgebildet werden. Korrespondierende experimentelle Bilder mit magnetischem Kontrast sind direkt daneben dargestellt. Rechts: Schematische Darstellung der magnetischen Domänenkonfiguration im magnetischen Quadrat ohne Verformung (oben, Pfeile und die Graustufenskala zeigen die Richtung der Magnetisierung an) und magnetische Konfiguration im verformten Zustand (unten). Hier wird die horizontale Magnetisierungsrichtung durch die Verformung favorisiert, sodass die weiße und die schwarze Domäne größer werden.

Abb./©: Michael Foerster, ALBA

Einem internationalen Team von Wissenschaftlern unter Beteiligung von Physikern der Johannes Gutenberg-Universität Mainz (JGU) ist es gelungen, magnetische Nanostrukturen mithilfe von akustischen Oberflächenwellen zu beeinflussen und die Effekte mit neuen Abbildungsmethoden sichtbar zu machen.

Die Nutzung akustischer Oberflächenwellen, um die Magnetisierung von nanomagnetischen Elementen zu ändern, liefert eine neue Möglichkeit, um Magnetisierung energiesparend zu schalten. Die Forschungsarbeit wurde von Nature Communications publiziert.

Die Kontrolle der magnetischen Eigenschaften von Materialien ist von grundlegender Bedeutung, um Speicher, Computer und Kommunikationsgeräte auf der Nanoskala zu entwickeln. Während Datenspeicherung und Datenverarbeitung in rasantem Tempo voranschreiten, suchen Wissenschaftler nach neuen Methoden, wie die magnetischen Eigenschaften von Materialien zu kontrollieren sind. Ein Ansatz stützt sich auf die elastische Verformung des magnetischen Materials durch elektrische Felder.

Das Forschungsgebiet hat viel Interesse auf sich gezogen, weil es die Möglichkeit bietet, kleine magnetische Elemente mit wenig Energieaufwand umzuschalten. Studien dazu waren jedoch bislang auf einer Zeitskala von Sekunden bis Millisekunden erfolgt, viel zu langsam für Anwendungen in der Informationsverarbeitung.

Um schnelle Verformungsänderungen und dadurch schnelle Magnetisierungswechsel im Subnanosekundenbereich zu erzeugen, nutzt das internationale Wissenschaftlerteam akustische Oberflächenwellen. Diese „Surface Acoustic Waves“ (SAW) lassen sich mit Schallwellen in einem Festkörper vergleichen, nur dass SAWs für Menschen nicht hörbar sind. Schlägt man zum Beispiel mit einem Hammer auf eine Eisenstange, dann bewegt die Schallwelle eine Verformung entlang der Stange.

Auf ähnliche Weise propagiert eine SAW eine Verformung, allerdings nur an der Oberfläche vom Material, in etwa wie Wellen im Ozean, die sich an der Oberfläche entlangbewegen. In bestimmten Materialien, sogenannten Piezokristallen, die sich unter elektrischer Spannung ausbereiten oder zusammenziehen, können SAWs durch oszillierende elektrische Felder auf ultraschnellen Zeitskalen erzeugt werden.

In Zusammenarbeit mit Gruppen in Spanien, der Schweiz und Berlin hat der Arbeitskreis von Prof. Dr. Mathias Kläui am Institut für Physik der JGU eine neue experimentelle Technik genutzt, um die akustischen Oberflächenwellen sichtbar zu machen. Damit können die Wissenschaftler zeigen, dass sich SAWs eignen, um die Magnetisierung von nanometerkleinen magnetischen Elementen auf der Oberfläche der Kristalle extrem schnell umzuschalten.

Die Ergebnisse zeigen, dass magnetische Elemente ihre Eigenschaften durch den SAW-Effekt verändern und die magnetischen Domänen sich vergrößern oder schrumpfen, je nach Phase der Oberflächenwellen. Interessanterweise tritt die Veränderung nicht sofort ein, die beobachtete Verzögerung kann sogar moduliert werden. Hier liegt der Schlüssel, um in Zukunft energiesparende magnetische Geräte zu entwerfen: in dem Verständnis, wie die magnetischen Eigenschaften auf einer schnellen Zeitskala zu modifizieren sind.

„Für hochkomplexe Messungen sind eine enge internationale Zusammenarbeit mit führenden Gruppen und ein starkes Alumni-Netzwerk von strategischem Vorteil“, betont Kläui. „Wir haben uns mit einer Gruppe der spanischen Synchrotronstrahlungsquelle ALBA zusammengetan. Ein ehemaliger Doktorand aus der Gruppe in Mainz arbeitet bei ALBA und leitet dort diese Aktivitäten. Die Arbeit erfolgte außerdem in Kooperation mit einem Doktoranden der Exzellenz-Graduiertenschule MAINZ. Es ist großartig zu sehen, dass unsere Studierenden und Alumni so erfolgreich sind“, sagt Kläui, der auch als Direktor der Graduiertenschule MAINZ vorsteht.

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung in Mainz. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Abbildung:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_magnet_saw.jpg
Zwei Beispiele der Abbildung von Verformung und der resultierenden Magnetisierungskonfigurationen. Links: Bilder der Verformung durch eine Oberflächenwelle um ein magnetisches Element herum. Die Welle bewegt sich über das magnetische Quadrat hinweg (weiß, 2 μm Kantenlänge), und abhängig vom Zeitpunkt kann das Quadrat entweder im nicht verformten Zustand (oben) oder im verformten Zustand (unten) abgebildet werden. Korrespondierende experimentelle Bilder mit magnetischem Kontrast sind direkt daneben dargestellt. Rechts: Schematische Darstellung der magnetischen Domänenkonfiguration im magnetischen Quadrat ohne Verformung (oben, Pfeile und die Graustufenskala zeigen die Richtung der Magnetisierung an) und magnetische Konfiguration im verformten Zustand (unten). Hier wird die horizontale Magnetisierungsrichtung durch die Verformung favorisiert, sodass die weiße und die schwarze Domäne größer werden.
Abb./©: Michael Foerster, ALBA

Veröffentlichung:
Michael Foerster et al.
Direct imaging of delayed magneto dynamic modes induced by surface acoustic waves
Nature Communications 8, 1. September 2017
DOI: 10.1038/s41467-017-00456-0
https://www.nature.com/articles/s41467-017-00456-0

Weitere Informationen:
Prof. Dr. Mathias Kläui
Physik der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Exzellenz-Graduiertenschule Materials Science in Mainz (MAINZ)
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weiterführende Links:
https://www.uni-mainz.de/presse/76072.php (Pressemitteilung vom 28.07.2016 „Internationales Forscherteam deckt grundlegende Eigenschaften des Spin-Seebeck-Effekts auf)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen
27.03.2020 | Universität Rostock

nachricht Kraftmikroskopie - Das hält!
26.03.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics