Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Bits und elektrische Felder

08.11.2016

Forscher nutzen erstmalig elektrische Felder zum Schreiben und Löschen magnetischer Skyrmionen

Physikern der Universität Hamburg ist es gelungen, einzelne magnetische Skyrmionen – eine Art magnetischer Knoten – individuell mit lokalen elektrischen Feldern zu schreiben und zu löschen. Solche wirbelförmigen magnetischen Strukturen besitzen außergewöhnliche Eigenschaften und sind vielversprechende Kandidaten für zukünftige Datenspeicher.


Abb. 1: Nanoskalige Skyrmionen in ultradünnen Eisenfilmen von nur drei Atomlagen Dicke, aufgereiht auf wohl definierten Nanodatenspuren. Die Magnetisierung im Zentrum der 4 nm langen Skyrmionen (gelb) ist entgegengesetzt zu ihrer magnetischen Umgebung (blau) und zum äußeren angelegten Magnetfeld. Das Bild zeigt die Daten einer spinpolarisierten Rastertunnelmikroskopie-Messung, welche magnetische Nanostrukturen bis hin zur atomaren Skala abbilden kann.

A. Kubetzka, P.-J. Hsu und R. Wiesendanger, Universität Hamburg


Abb. 2: Löschen (links) und Schreiben (rechts) einzelner nanoskaliger Skyrmionen mit Hilfe lokaler elektrischer Felder. Zwischen den einzelnen Bildern wurde die Spitze eines Rastertunnelmikroskops entsprechend positioniert und das elektrische Feld kurzzeitig auf +3V/nm (links), bzw. -3 V/nm (rechts) erhöht. Ein einzelner atomarer Defekt (dunkel) in der ultradünnen Eisenschicht zeigt die extrem kleine Skala der eingeschriebenen Skyrmionen (heller Kontrast) auf.

P.-J. Hsu und R. Wiesendanger, Universität Hamburg

Deswegen sind Skyrmionen bereits seit einigen Jahren Gegenstand aktiver Forschung und wurden bisher mit magnetischen Feldern oder elektrischen Strömen manipuliert. Wie die Zeitschrift Nature Nanotechnolgy in ihrer Online-Ausgabe vom 7. November 2016 berichtet, haben die Hamburger Wissenschaftler die kontrollierte Erzeugung und Auslöschung einzelner Skyrmionen mit lokalen elektrischen Feldern demonstriert.

Diese Rastertunnelmikroskopie-Experimente, welche die fundamentale Wirkung elektrischer Felder auf magnetische Eigenschaften untersuchen, weisen zugleich einen möglichen Weg hin zu einer energieeffizienteren Informationstechnologie.

Magnetische Skyrmionen kann man sich bildlich als einen zweidimensionalen Knoten vorstellen, bei dem sich die atomaren magnetischen Momente mit einem definierten Drehsinn innerhalb einer Ebene einmal komplett um 360° drehen. Diese magnetischen Knoten haben Teilchencharakter und man kann sie aufgrund ihrer Topologie charakterisieren: ein Skyrmion hat die topologische Ladung „1“, im Gegensatz zu einer Magnetisierung ohne Knoten mit der topologischen Ladung „0“.

In den bisher verwendeten konventionellen Speichern bestehen die magnetischen Bits, ähnlich wie klassische Stabmagnete, aus vielen Atomen mit einer parallelen Anordnung ihrer magnetischen Momente und können entsprechend ihrer magnetischen Ausrichtung die für die Informationstechnologie wichtigen Werte „1“ und „0“ darstellen. Diese zwei Zustände sind physikalisch gleich und können daher nicht gezielt mit elektrischen Feldern geschaltet werden. Anders ist dies im Fall von Skyrmionen.

Hier kann man die topologische Ladung nutzen um mit einem Skyrmion den Bit-Zustand „1“ (es gibt ein Skyrmion) und „0“ (es gibt kein Skyrmion) darzustellen. Diese zwei Zustände sind aufgrund der verschiedenen Topologie physikalisch nicht gleich und man kann daher ihre Energiebalance mit elektrischen Feldern beeinflussen.

Die Hamburger Experimentalphysiker aus der Gruppe von Prof. Roland Wiesendanger konnten zeigen, dass in geeignet eingestellten äußeren Magnetfeldern die experimentell realisierbaren elektrischen Felder ausreichend sind für eine reversible Manipulation einzelner Skyrmionen: dabei bestimmt die Richtung des elektrischen Feldes direkt, ob geschrieben oder gelöscht wird. Abbildung 1 zeigt ein Bild des verwendeten drei Atomlagen dicken Eisenfilms auf einem Iridium-Kristall in einem magnetischen Feld.

Die Skyrmionen (gelb) haben dabei aufgrund der atomaren Anordnung im Eisenfilm eine asymmetrische Form und ordnen sich durch Nanostrukturierung wie auf einer Festplatte in Reihen an, allerdings auf einer viel kleineren Skala von nur wenigen Nanometern. Abbildung 2 demonstriert das kontrollierte Löschen (links) mit der einen Richtung und das Schreiben (rechts) mit der anderen Richtung des elektrischen Feldes.

"Das Entscheidende ist, dass die zwei Zustände 'Skyrmion' und 'Ferromagnet' durch keine Symmetrieoperation verknüpft sind, nur deshalb ist das elektrische Feld wirksam.", sagt Dr. Kirsten von Bergmann, Wissenschaftlerin an der Jungiusstrasse, "Das folgt im Grunde direkt aus der unterschiedlichen Topologie der beiden Zustände". Pin-Jui Hsu, der die Experimente im Labor durchgeführt hat, sagt: "Es war schnell klar, dass sich die Skyrmionen schalten lassen. Ich war allerdings überrascht, wie lokal das elektrische Feld wirkt, und dass die Richtung des Feldes eine so große Rolle spielt."

Das experimentell realisierte Schreiben und Löschen von Skyrmionen mit elektrischen Feldern zeigt einen neuen möglichen Weg für eine energieeffizientere Datenspeichertechnologie auf, da der Schreib- und Leseprozess nahezu stromlos funktioniert.

Die Forschungsarbeiten wurden u.a. im Rahmen des Hamburger Wissenschaftspreises an Prof. Roland Wiesendanger durch die Hamburgische Stiftung für Wissenschaften, Entwicklung und Kultur Helmut und Hannelore Greve gefördert.

Abb. 1: Nanoskalige Skyrmionen in ultradünnen Eisenfilmen von nur drei Atomlagen Dicke, aufgereiht auf wohl definierten Nanodatenspuren. Die Magnetisierung im Zentrum der 4 nm langen Skyrmionen (gelb) ist entgegengesetzt zu ihrer magnetischen Umgebung (blau) und zum äußeren angelegten Magnetfeld. Das Bild zeigt die Daten einer spinpolarisierten Rastertunnelmikroskopie-Messung, welche magnetische Nanostrukturen bis hin zur atomaren Skala abbilden kann.

Abb. 2: Löschen (links) und Schreiben (rechts) einzelner nanoskaliger Skyrmionen mit Hilfe lokaler elektrischer Felder. Zwischen den einzelnen Bildern wurde die Spitze eines Rastertunnelmikroskops entsprechend positioniert und das elektrische Feld kurzzeitig auf +3V/nm (links), bzw. -3 V/nm (rechts) erhöht. Ein einzelner atomarer Defekt (dunkel) in der ultradünnen Eisenschicht zeigt die extrem kleine Skala der eingeschriebenen Skyrmionen (heller Kontrast) auf.

Original Veröffentlichung:

Electric-field-driven switching of individual magnetic Skyrmions
Pin-Jui Hsu, André Kubetzka, Aurore Finco, Niklas Romming, Kirsten von Bergmann, and Roland Wiesendanger,
Nature Nanotechnology (2016).
DOI: 10.1038/nnano.2016.234

Weitere Informationen:

Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Fachbereich Physik
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg

Tel: (0 40) / 42838 - 52 44
E-Mail: wiesendanger@physnet.uni-hamburg.de

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics