Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lösungen finden, wenn alles mit allem zusammenhängt

26.01.2016

Quantenobjekte kann man nicht einfach als Summe ihrer Einzelteile verstehen – das macht Quanten-Rechnungen oft extrem schwierig. An der TU Wien berechnet man nun Bose-Einstein-Kondensate, die ihre spannendsten Eigenschaften nur im Kollektiv preisgeben.

Quantensysteme kann man nur dann auf einfache Weise berechnen, wenn sie aus wenigen Einzelteilen bestehen. Ein Wasserstoffatom ist kein Problem – eine Atomwolke, die tausende Teilchen enthält, kann man normalerweise nur näherungsweise beschreiben.


Bose-Einstein-Kondensate, die Wellen schlagen: Ein Vielteilchen-Phänomen

TU Wien

Der Grund dafür ist, dass die Teilchen quantenphysikalisch miteinander verbunden sind und nicht einfach getrennt voneinander betrachtet werden können. Kaspar Sakmann vom Atominstitut der TU Wien zeigt nun gemeinsam mit Mark Kasevich (Stanford, USA) im Fachjournal „Nature Physics“, dass man mit bestimmten Methoden sogar Effekte in ultrakalten Bose-Einstein-Kondensate berechnen kann, die sich nur durch die quantenphysikalische Korrelation zwischen vielen Atomen erklären lassen.

Quantenphysikalische Verbindungen

Die Quantenphysik ist ein großes Zufallsspiel: Die Atome in einer Atomwolke haben zunächst keinen festgelegten Aufenthaltsort. Ähnlich wie ein Würfel noch keine Augenzahl anzeigt, so lange er noch in der Luft herumwirbelt, befinden sich die Atome zunächst überall gleichzeitig. Erst bei der Messung werden die Positionen der Atome festgelegt.

„Wir bestrahlen die Atomwolke mit Licht, das von den Atomen absorbiert wird“, erklärt Kaspar Sakmann. „Man fotografiert die Atome gewissermaßen und legt ihre Position damit fest. Das Ergebnis ist völlig zufällig.“

Allerdings unterscheidet sich dieser Quantenzufall vom Würfelspielen: Wenn man nämlich mit verschiedenen Würfeln gleichzeitig würfelt, kann man sie völlig getrennt voneinander betrachten. Ob man mit dem ersten Würfel eine Sechs würfelt, hat überhaupt keinen Einfluss darauf, welche Zahl beim Würfel Nummer sieben drankommen wird.

Die Atome in der Atomwolke sind hingegen quantenphysikalisch miteinander verbunden. Man kann sie nicht getrennt voneinander betrachten, sie sind ein gemeinsames Quantenobjekt. Daher hängt das Ergebnis jeder Atom-Aufenthaltsmessung auf mathematisch komplizierte Weise von den Aufenthaltsorten aller anderen Atome ab.

„Es ist nicht schwer, die Wahrscheinlichkeit zu ermitteln, dass man ein Teilchen an einem bestimmten Ort vorfinden wird“, sagt Kaspar Sakmann. „Im Zentrum der Wolke ist die Wahrscheinlichkeit am größten, nach außen hin nimmt sie stetig ab.“

Hätte man es mit einem klassischen Zufallssystem zu tun, dann wäre das schon alles: Wenn man weiß, dass mit einem einzelnen Würfel in einem Sechstel aller Fälle eine Eins würfeln wird, dann kann man problemlos die Wahrscheinlichkeit ausrechnen, mit drei Würfeln jeweils eine Eins zu würfeln.

Auch wenn man fünfmal die Eins würfelt, ist beim sechsten Würfel die Wahrscheinlichkeit für eine Eins wieder genauso groß wie immer – ein Sechstel. Bei quantenphysikalischen Teilchen ist das viel komplizierter.

„Wir teilen das Problem Schritt für Schritt auf“, erklärt Sakmann. „Wir berechnen zuerst die Wahrscheinlichkeit, mit der sich das erste Teilchen an einer bestimmten Stelle befindet. Die Aufenthaltswahrscheinlichkeiten des zweiten Teilchens hängen dann davon ab, wo man das erste gefunden hat, der Ort des dritten Teilchens von den ersten beiden – und immer so weiter.“

Um die Verteilung zu berechnen, die das letzte Teilchen beschreibt, muss man ausnahmslos alle anderen Teilchen berücksichtigen – diese Art von Quantenverschränkung macht das Problem mathematisch höchst kompliziert.

Ohne Korrelationen wäre das Experiment unerklärbar

Doch genau diese Art von höheren Korrelationen zwischen vielen Teilchen sind unverzichtbar – zum Beispiel um das Verhalten von kollidierenden Bose-Einstein-Kondensaten zu berechnen. „Aus dem Experiment weiß man, dass bei solchen Kollisionen spezielle Quantenwellen entstehen. An manchen Orten findet man viele Teilchen, gleich daneben überhaupt keine“, sagt Kaspar Sakmann.

„Betrachtet man die Atome des Bose-Einstein-Kondensats einzeln, dann ist dieser Effekt nicht zu erklären. Erst wenn man die vollständige, Quanten-Verteilungsfunktion mit höheren Korrelationen betrachtet, tauchen diese Wellen in der Rechnung auf.“

Berechnet wurden auch Bose-Einstein-Kondensate, die man mit einem Laserstrahl umrührt, woraufhin spontan an bestimmten Orten kleine Vortices entstehen – auch ein typischer Vielteilcheneffekt. „Unsere Ergebnisse zeigen, wie wichtig diese Korrelationen sind, und dass man sie trotz aller Schwierigkeiten korrekt berücksichtigen kann“, sagt Sakmann. Mit einigen Modifikationen sollte die Rechenmethode auch für viele andere Quantensysteme anwendbar sein.

Rückfragehinweis:
Dr. Kaspar Sakmann
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
kaspar.sakmann@ati.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erster radioastronomischer Nachweis eines extrasolaren Planetensystems um einen Hauptreihenstern
05.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht Atome beim Fotoshooting
03.08.2020 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics