Lichtstrahlen an verborgene Orte folgen

Genauso wie Autos, die durch einen Tunnel fahren, wird Licht in optischen Fasern erst wieder sichtbar, wenn die Strahlen am Ende der Faser austreten – normalerweise. Physiker der Friedrich-Schiller-Universität Jena haben den Weg des Lichts durch Systeme solcher Wellenleiter jetzt genauer untersucht und im Detail beobachtet, was mit dem Lichtstrahl geschieht.

„Die Krümmung des Wellenleitersystems hat Einfluss auf die Beugung, also die Diffusion des Lichtes zwischen benachbarten Wellenleitern“, erläutert Felix Dreisow vom Institut für Angewandte Physik der Universität Jena. Zusammen mit seinen Kollegen von der Arbeitsgruppe „Ultraschnelle Optik“ um Prof. Dr. Stefan Nolte hat er herausgefunden, dass durch eine Kombination verschiedener Krümmungsprofile diese Beugung des Lichtes gezielt beeinflusst und sogar fast vollständig unterbunden werden kann. „Es ist uns gelungen, diesen Effekt auch polychromatisch, also für Licht verschiedener Wellenlängen, zu realisieren“, beschreibt Dreisow die Besonderheit der Forschungsergebnisse. Diese haben die Jenaer Wissenschaftler nun zusammen mit australischen Kollegen im renommierten Fachblatt „Nature Physics“ veröffentlicht.

Die verwendeten Wellenleiter stellten die Jenaer Forscher mit Hilfe ultrakurzer Laserpulse her. Mit diesem Verfahren werden im Jenaer Institut für Angewandte Physik transparente Materialen wie Gläser, Kristalle oder auch Polymere auf mikroskopischer Ebene modifiziert. „Normalerweise dringen Strahlen einfach durch Glas hindurch“, so Arbeitsgruppenleiter Prof. Nolte. „Unsere im Femtosekundenbereich arbeitenden Laser können wir jedoch gezielt auf Punkte innerhalb des Volumenmaterials fokussieren und dort kontrolliert Mikrostrukturen erzeugen.“

Auf diese Weise haben die Jenaer Forscher die verschieden gekrümmten Wellenleiter mikrometergenau in bis zu zehn Zentimeter lange Glasproben „eingeschrieben“. Um das Licht während seiner Ausbreitung durch die so erzeugten „Glastunnel“ sichtbar zu machen, wurden bei der Wellenleiterherstellung entstehende Farbzentren genutzt. „Durch das Licht werden diese Zentren angeregt und wir können von außen ein fluoreszierendes Abbild der Lichtverteilung erkennen“, beschreibt Felix Dreisow das neuartige Verfahren. So konnten die Wissenschaftler die maßgeschneiderten Beugungseigenschaften der Wellenleitersysteme auch direkt beobachten. „Durch spezielle Krümmungen ist es möglich, die Ausbreitungsrichtung des Lichtes exakt zu kontrollieren“, erklärt Prof. Nolte den großen Vorteil der Entdeckung.

Möglichkeiten für eine praktische Anwendung liegen für die Physiker der Universität Jena auf der Hand: „Ob Telekommunikation oder bildgebende Verfahren – überall, wo Photonen durch mikrooptische Systeme oder Glasfasern transportiert werden, ist ein Einsatz denkbar“, so Nolte.

Originalpublikation:
Szameit, A., Garanovich, I. L., Heinrich, M., Sukhorukov, A. A., Dreisow, F., Pertsch, T., Nolte, S., Tünnermann, A., Kivshar, Y. S.: Polychromatic dynamic localization in curved photonic lattices. Nature Physics, April 2009, Vol. 5, Nr. 4, 271-275
Kontakt:
Prof. Dr. Stefan Nolte / Dipl.-Phys. Felix Dreisow
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Str. 15, 07745 Jena
Tel.: 03641 / 947822
E-Mail: f.dreisow[at]uni-jena.de

Media Contact

Manuela Heberer idw

Weitere Informationen:

http://www.uni-jena.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer