Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Lichtkristall mit Drehsinn

29.10.2013
Seit mehr als 40 Jahren verfolgen Physiker das Ziel, das komplexe Verhalten von Elektronen in zweidimensionalen Kristallen unter dem Einfluss starker Magnetfelder experimentell zu erforschen.

Jetzt ist es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwigs-Maximilians-Universität München und Direktor am MPQ) in Zusammenarbeit mit der theoretischen Physikerin Dr. Belén Paredes (CSIC/UAM Madrid) gelungen, mit einer neu entwickelten experimentellen Methode zweidimensionale Festkörperkristalle mit künstlichen Gittern aus neutralen Atomen und Laserlicht zu simulieren.


Abbildung 1:
Zyklotron-ähnliche Bewegung der Atome in einem speziell erzeugten Lichtkristall unter Einfluss eines sehr starken effektiven Magnetfeldes. Die experimentell erzeugten effektiven Feldstärken sind für natürlich vorkommende Materialien vergleichbar mit einem Magnetfeld von einigen 10.000 Tesla. Im Experiment wurde sowohl der berühmte Hofstadter-Harper als auch der Quantum Spin Hall Hamilton-Operator verwirklicht.

In diesen künstlichen Quantenmaterialien können die Atome effektiven Magnetfeldern ausgesetzt werden, die einige tausende Male stärker sind als es in natürlich vorkommenden Festkörpern zu realisieren wäre (Phys. Rev. Lett. 111, 185301, 2013).

Geladene Teilchen in Magnetfeldern erfahren eine Kraft senkrecht zu ihrer Bewegungsrichtung – die Lorentz-Kraft. Die Lorentz-Kraft zwingt die Teilchen, sich auf Kreisbahnen, sogenannten Zyklotron-Orbits, senkrecht zur Magnetfeldrichtung zu bewegen. Ein ausreichend großes Magnetfeld kann so die Eigenschaften eines Materials dramatisch verändern und neue Quantenphänomene wie z. B. den Quanten Hall Effekt hervorrufen. Der Radius der Zyklotron-Orbits nimmt dabei mit zunehmender Magnetfeldstärke ab. Für übliche Magnetfeldstärken ist er weit größer als der Abstand zwischen benachbarten Ionen im Material, so dass der Einfluss des Kristallpotentials zu vernachlässigen ist. Bei sehr starken Magnetfeldern sind Ionen-Abstand und Zyklotron-Bahnen jedoch vergleichbar groß, und das Zusammenspiel zwischen Magnetfeld und Kristallpotential führt zu eindrucksvollen neuen Effekten.

Diese zeigen sich beispielsweise in einer fraktalen Struktur des Energiespektrums der Elektronene, welches erstmals 1976 von Douglas Hofstadter vorhergesagt wurde und als „Hofstadter-Schmetterling“ bekannt ist. Viele faszinierende elektronische Materialeigenschaften sind damit verbunden, jedoch war es bisher nicht möglich, das Problem in seiner vollen Komplexität zu untersuchen.

In natürlich vorkommenden Materialien ist der Abstand zwischen benachbarten Ionen sehr klein. Daher ist es schwierig, den Bereich des Hofstadter-Schmetterlings zu realisieren – man würde Magnetfeldstärken benötigen, die sich mit vorhandenen Mitteln nicht erzeugen lassen. Einen Ausweg stellen künstlich hergestellte Materialien dar, deren Gitterkonstanten effektiv größer sind, wie z.B. Systeme aus zwei überlagerten Schichten aus Graphen und Bornitrid.

Die Experimente des Münchner Wissenschaftlerteams folgen einem alternativen Ansatz. Hier werden starke Magnetfelder künstlich erzeugt, indem ultrakalte Atome speziell angelegten Laserfeldern ausgesetzt werden. Das untersuchte Quantensystem besteht aus Rubidium-Atomen, die mithilfe von stehenden Wellen in periodischen Strukturen gefangen werden. „Die Atome können sich nur in Bereichen hoher Lichtintensitäten aufhalten und ordnen sich daher in einer 2D Struktur an, die sich anschaulich mit der Form eines Eierkarton vergleichen lässt.“, erklärt Monika Aidelsburger, eine Physikerin im Team von Prof. Bloch. „Die Laserstrahlen übernehmen die Rolle des Ionenkristalls und die Atome die der Elektronen.“

Einen Haken gibt es dabei jedoch: da die Atome elektrisch neutral sind, erfahren sie auch in einem externen Magnetfeld keine Lorentz-Kraft, die sie auf kreisförmige Bahnen zwingt. Die Aufgabe bestand darin, mit einer neuen Technik diesen Effekt der Lorentz-Kraft für neutrale Teilchen nachzuahmen. Eine Verknüpfung aus Verkippen und gleichzeitigem Schütteln des Gitters mithilfe zweier zusätzlicher Laserstrahlen hatte die gewünschte Wirkung: die Atome bewegten sich im Gitter auf zyklotron-ähnlichen Bahnen, so wie geladene Teilchen in einem externen Magnetfeld. Auf diesem Weg gelang es dem Team künstliche Magnetfelder zu erzeugen, die stark genug sind um die Quantenphänomene im Bereich des Hofstadter-Schmetterlings zu untersuchen.

Zusätzlich gelang es den Wissenschaftlern den sogenannten Spin-Hall-Effekt zu beobachten: zwei Teilchen mit entgegengesetztem Spin spüren ein Magnetfeld derselben Stärke, jedoch mit jeweils entgegengesetzter Richtung. Infolgedessen sind auch die Richtung der Lorentz-Kraft und die Zyklotron-Bewegung für die beiden Spins entgegengesetzt. Die beiden Spin-Zustände werden in diesen Experimenten durch zwei verschiedene Zustände der Rubidium Atome realisiert.

In zukünftigen Experimenten könnte diese Methode dazu dienen die komplexe Physik des Hofstadter-Modells mithilfe des defektfreien und gut kontrollierbaren Systems von ultrakalten Atomen in optischen Gittern experimentell zu untersuchen. Die direkte Beobachtung der mikroskopischen Bewegung der Teilchen im Gitter mit neuen experimentellen Techniken wie z. B. dem Quantengas-Mikroskop könnte zu einem besseren Verständnis von Materialeigenschaften führen. Darüber hinaus könnte die neue Methode auch den Weg bereiten für die Entdeckung und Erforschung neuer Quantenphasen von Materialien unter extremen experimentellen Bedingungen. [M.A].

Originalveröffentlichung:

M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices

Physical Review. Letters 111, 185301 (2013)

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
M.Sc. Monika Aidelsburger
LMU München
Telefon: +49 89 2180 6119
E-Mail: monika.aidelsburger@physik.uni-muenchen.de
Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
Cantoblanco
28049 Madrid, Spain
Telefon: +34 91 299 9862
E-Mail: belen.paredes@csic.es

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de/media/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

nachricht Weltrekord: Schnellste 3D-Tomographien an BESSY II
08.08.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics