Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht-Tsunami im Supraleiter

28.03.2013
Supraleiter sind Materialien, die elektrischen Strom ohne Verluste leiten. Einem internationalen Forscherteam um Professor Andrea Cavalleri vom Max-Planck Institut für die Struktur und Dynamik der Materie ist es am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) gelungen, mit einem starken Terahertz-Laser diese widerstandsfreie Leitung gezielt zu beeinflussen. Das sehr präzise Licht des Lasers wird zu einem Wirbel, der sich ähnlich einem Tsunami durch den Supraleiter bewegt. Die Ergebnisse erscheinen in der Fachzeitschrift „Nature Materials“.

Bei ihrem jüngsten Experiment untersuchten Prof. Andrea Cavalleri vom Max-Planck Institut für die Struktur und Dynamik der Materie am Center for Free-Electron Laser Science (CFEL) in Hamburg und Dr. Michael Gensch vom Helmholtz-Zentrum Dresden-Rossendorf mit weiteren Kollegen vom HZDR, aus Großbritannien und Japan, ob und wie man die Supraleitung gezielt kontrollieren kann.

Das Ziel ihrer Forschungen ist, supraleitende Materialien für neue Technologien besser nutzbar zu machen, beispielsweise für die Verarbeitung von Informationen. Dazu ist es besonders wichtig, die Sprungtemperatur mit einem besseren Verständnis der zugrundeliegenden Phänomene zu erhöhen, wobei Sprungtemperatur bedeutet, dass Materialien unterhalb dieses Wertes supraleitend sind. Die meisten Supraleiter funktionieren auch heute nur bei sehr tiefen Temperaturen.

Moderne Hochtemperatur-Supraleiter sind typischerweise Festkörper, die aus einem Stapel dünner Schichten aufgebaut sind, ähnlich wie die Seiten in einem Buch. Die Schichten sind leitfähig und transportieren Strom. Von Schicht zu Schicht kann jedoch bei Raumtemperatur kein Strom fließen, weil sich die Elektronen, die für den Stromfluss verantwortlich sind, nur in der jeweiligen Schicht frei bewegen können.

Wird nun solch ein Schichtstapel tief genug gekühlt, setzt Supraleitung entlang aller Richtungen ein. Doch es gibt einen Unterschied: Während die Elektronen in der Schicht einfach ohne Verluste fließen, können die Elektronen sich nun auch von Schicht zu Schicht bewegen, indem sie durch die isolierenden Zwischenbereiche „tunneln“. Dr. Gensch erläutert: „Schon die Geometrie legt nahe, dass es sich innerhalb der Schicht und zwischen den Schichten um andere Mechanismen von Supraleitung handeln muss. Uns hat interessiert, wie die Elektronen diese Eigenschaft vertikal von Schicht zu Schicht transportieren bzw. ob wir diesen Transport kontrollieren können, ohne die Supraleitung in den horizontalen Schichten zu stören.“

Für ihre Experimente nutzten die Forscher einen der beiden Freie-Elektronen-Laser (FELBE) im HZDR, der Laserblitze einer bestimmten, frei einstellbaren Wellenlänge zwischen dem Infrarot und den Mikrowellen erzeugt. Wenn solch ein kurzer Terahertz-Blitz in der richtigen Frequenz die Materialschichten des Supraleiters durchdringt, schaltet er die Supraleitung sehr gezielt und lokal ab, indem er direkt die Tunneleigenschaften der Elektronen zwischen den supraleitenden Schichten ändert. Im Detail erzeugt das Licht ein Paar von entgegengesetzt drehenden Wirbelströmen, die normal leitend sind.

Diese Wirbel bewegen sich dann mit dem Licht durch den Supraleiter. Es formt sich eine sogenannte Soliton-Welle. Das besondere dieser Wellen: Sie behalten unabhängig von Störstellen im Supraleiter immer ihre Form. Dies ist vergleichbar mit dem Verhalten bekannter Soliton-Wellen – wie beispielsweise Tsunamis –, deren Form auch nicht durch Versetzungen oder Unebenheiten am Boden beeinflusst wird.

Die sich durch den Supraleiter bewegenden Wirbel ändern auch die optischen Eigenschaften des Materials – es wird ein wenig durchsichtig. Zwar nicht für sichtbares Licht, aber für Wellenlängen ganz in der Nähe der Terahertz-Strahlung. Die Laserblitze sind jeweils nur einige Pikosekunden, also billionstel Teile einer Sekunde, lang, sodass die Wissenschaftler alle Vorgänge – wie das Aufkommen der Wirbel und deren Soliton-Bewegung – direkt auf dieser sehr schnellen Zeitskala beobachten können. Ähnliches war der Gruppe um Prof. Cavalleri im Prinzip schon einmal vorher gelungen. Allerdings ließ sich die Supraleitung zwischen den Schichten da nur sehr schnell hintereinander komplett aus- und wieder anschalten. Das Experiment in Dresden konnte nun erstmalig die Supraleitung sehr gezielt und vor allem auch lokal abschalten – und diesen Zustand fast zehnmal so lange stabilisieren.

Insbesondere erwarten die Physiker durch die lichterzeugten Wirbel im Supraleiter eine Reihe neuer Anwendungen. Da sie sich durch den Kristall ja wie beim Tsunami unabhängig von Störungen bewegen, eignen sich diese Wirbel hervorragend, um Informationen darin zu speichern und zu transportieren. Ganz ähnlich wie bei Soliton-Wellen verläuft etwa auch der Informationstransport in der DNA. Die in dem Experiment gefundene und demonstrierte Kontrolle der Wirbel mit Laserlicht lässt die Physiker um Prof. Cavalleri jedenfalls schon von neuen Möglichkeiten der Informationsverarbeitung in Supraleitern träumen.

Supraleiter im Dauerfeuer

Intensive Pulse im unsichtbaren Terahertz-Bereich (0,1 - 10 THz) wecken seit einigen Jahren ein enormes Interesse bei Wissenschaftlern, die sogenannte komplexe Materialien wie Hochtemperatur-Supraleiter untersuchen. Der Grund dafür sind die besonderen Eigenschaften dieser langwelligen Strahlung, deren Wellenlängen zwischen 0,03 und drei Millimetern liegen. Erst seit einigen Jahren stehen dafür ausreichend starke Quellen zur Verfügung. Die stärksten Terahertz-Pulse erzeugen Geräte, die durch Elektronenbeschleuniger angetrieben werden.
Auf einen besonders wichtigen Typ für die Materialwissenschaften hat sich das HZDR im ELBE genannten Zentrum für Hochleistungs-Strahlenquellen spezialisiert. Während andere Geräte nach einer kleinen Serie superkurzer Laserblitze eine Pause einlegen müssen, können die ELBE-Quellen auf Dauerfeuer bleiben. Erst diese kontinuierliche Abfolge von Pulsen aber ermöglicht die Genauigkeit, die Forscher wie Dr. Gensch und ihre Messgäste wie Prof. Cavalleri für ihre Analysen brauchen. Um zukünftig den ganzen Spektralbereich bis hin zu 0,1 Terahertz bzw. drei Millimetern Wellenlänge mit noch intensiveren Pulsen abzudecken, baut das HZDR unter der Leitung von Dr. Gensch eine neue, superradiante Terahertz-Quelle namens TELBE auf. Superradianz bedeutet vereinfacht ausgedrückt, dass äußerst intensives Licht in einem lawinenartig kurzen Prozess entsteht, ohne dass dabei – wie etwa bei einem Freie-Elektronen-Laser – Spiegel als Resonatoren benötigt werden. TELBE wird in den nächsten Jahren mit Unterstützung von Nutzern in Betrieb genommen und getestet. Die Forscher hoffen darauf, damit weitere wichtige Ergebnisse auf dem Gebiet der Materialforschung, aber auch der Lebenswissenschaften, zu erzielen.

Publikation: A. Cavalleri, M. Gensch et al.: „Optical excitation of Josephson plasma solitons in a cuprate superconductor“, in Nature Materials (2013), Online-Publikation vom 24.03.2013, doi:10.1038/nmat3580

Weitere Informationen
Dr. Michael Gensch
Institut für Strahlenphysik des HZDR
Tel. 0351 260-2464 | m.gensch@hzdr.de

Pressekontakt
Dr. Christine Bohnet
Tel. 0351 260-2450 | c.bohnet@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de
http://www.mpg.de/7063613/Josephson-plasma_soliton_supraleiter
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3580.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics