Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht steuert Zwei-Atom-Rechner

07.02.2018

MPQ-Wissenschaftler realisieren Rechenoperationen mit Quanten-Gattern, die Photonen zwischen zwei in einem Resonator gefangenen Atomen vermitteln.

Manch ein mächtiger Regierungschef mag von der Möglichkeit träumen, unbemerkt von Freund oder Feind mit seinen Kollegen in anderen Kontinenten Kontakt aufzunehmen. Neue Quantentechnologien könnten solche Wünsche eines Tages Wirklichkeit werden lassen.


Anschauliche Darstellung des experimentellen Aufbaus: Auf einen optischen Resonator, in dem zwei Atome (rote Kügelchen) gefangen sind, treffen von rechts einzelne Photonen (hellrot). Infolge der starken Kopplung der Atome an das Lichtfeld des Resonators vermittelt das Photon eine starke Wechselwirkung zwischen den Atomen, mit deren Hilfe sich Gatter-Operationen realisieren lassen. Im Anschluss an jede Gatter-Operation wird der Zustand der Atome anhand ihrer Fluoreszenz und der Transmission des Resonators bestimmt. (Grafik: MPQ, Abteilung Quantendynamik)

Denn weltweit arbeiten Physiker an der Realisierung großräumiger Quantennetzwerke, in denen einzelne Lichtquanten (geheime) Quanteninformationen sicher an weit entfernte Stationen übermitteln. Fundamentale Bausteine solcher Netzwerke sind Elemente wie Quanten-Repeater, die dem Verlust der Information über weite Strecken entgegen wirken, oder Quanten-Logikgatter, die für die Verarbeitung von Quanteninformation unerlässlich sind.

Ein neues Konzept für ein Quanten-Gatter hat jetzt ein Team von Wissenschaftlern um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik in Garching und Leiter der Abteilung Quantendynamik, vorgestellt (Physical Review X 8, 6. Februar 2018).

Dabei entsteht zwischen zwei in einem Resonator gefangenen Atomen durch von außen eintreffende Lichtquanten (Photonen) eine Wechselwirkung, die sich für die Umsetzung charakteristischer Gatterfunktionen wie z.B. eines CNOT-Gatters oder der Erzeugung von Verschränkung nutzen lässt. Dieses Modell ist aus mehreren Gründen sehr attraktiv: die Gatter-Operationen erfolgen innerhalb weniger Mikrosekunden, was von Vorteil für die Quanteninformationsverarbeitung ist; das Prinzip funktioniert auch auf anderen experimentellen Plattformen, und überdies lässt sich das Gatter auch als Baustein in einem Quanten-Repeater einsetzen.

Kernstück des Experiments (siehe Abbildung) ist ein asymmetrischer Hohlraumresonator, im Fachjargon „Cavity“ genannt, der aus einem hochreflektierenden Spiegel (links) und einem Spiegel mit einer gewissen Durchlässigkeit (rechts) gebildet wird. In seinem Zentrum befinden sich zwei elektrisch neutrale Rubidium-Atome. Jedes Atom ist Träger eines Qubits, d.h. einer Quanteninformation, die in die Überlagerung zweier stabiler Grundzustände (sie entsprechen den klassischen Bits „0“ und „1“) kodiert ist.

„Einer der atomaren Grundzustände ist in Resonanz mit dem Lichtfeld der Cavity. Deshalb bilden Atome und Resonator ein stark gekoppeltes System“, betont Stephan Welte, der an dem Experiment im Rahmen seiner Doktorarbeit forscht. „Das ist die Voraussetzung dafür, dass die Atome miteinander sprechen können – im freien Raum wäre das nicht möglich.“

Zur Ausführung der Gatter-Operation lässt man einzelne Photonen auf den teildurchlässigen Spiegel fallen. Was dann passiert, hängt von den Anfangszuständen der Atome ab. „Wenn sich beide Atome in einem nicht-koppelnden Zustand befinden, kann das Photon in die Cavity eindringen und eine optische Stehwelle zwischen den Spiegeln aufbauen“, erklärt Bastian Hacker, ebenfalls Doktorand am Experiment.

„Über dieses Lichtfeld können die Atome miteinander kommunizieren: ist es vorhanden, dann wird die Phase der gespeicherten Qubits um 180 Grad gedreht.“ In allen anderen Fällen, wenn ein oder sogar beide Atome in Resonanz mit den Cavity-Moden sind, wird das Photon abgewiesen, und der Zustand des Gesamtsystems bleibt unverändert.

Mit Hilfe dieser Effekte lassen sich zwischen den beiden Atomen elementare Rechenoperationen (Quanten-Gatter) realisieren. Dies belegen die Garchinger Physiker anhand von zwei charakteristischen Gatterfunktionen. Zum einen zeigen sie, dass ihr Aufbau als typisches C(ontrolled)NOT-Gatter arbeiten kann: dabei bestimmt der Eingangswert des einen (Kontroll)-Qubits, ob das andere (Target)-Qubit seinen Zustand ändert oder nicht. Als Basis für ihre Untersuchungen definieren die Physiker für ihr Zwei-Atom-System vier zueinander orthogonale Zustände, die sie jeweils nach der Gatter-Operation einer Messung unterziehen. Die aus diesen Messergebnissen erstellte Tabelle entspricht der Wahrheitstabelle eines klassischen XOR Gatters.

In einer weiteren Messreihe zeigen die Wissenschaftler, dass sie mit ihrem Aufbau aus zwei anfänglich unabhängigen Atomen einen quantenmechanisch verschränkten Zustand erzeugen können. „Dazu präparieren wir den Anfangszustand der Atome so, dass sich jedes in einer kohärenten Überlagerung aus beiden Grundzuständen befindet“, führt Stephan Welte aus. „Somit sind auch beide Fälle – dass das Photon in die Cavity gelangt und dass es abgewiesen wird – quantenmechanisch überlagert. Infolgedessen entsteht durch unser Gatter eine Verschränkung zwischen den Atomen.“

„Der Mechanismus, den wir hier verwenden, beinhaltet nur einen physikalischen Schritt und ist damit besonders einfach und elegant. Im Gegensatz zu anderen Gattermechanismen spielt der Abstand der beiden Atome – bei uns zwischen zwei und 12 Mikrometer – keine Rolle“, betont Bastian Hacker. „Das Prinzip lässt sich auch ohne weiteres auf experimentelle Plattformen anwenden, in denen andere Atome, Ionen oder z.B. Festkörper-Quantenpunkte Träger der Quanteninformation sind.“ Prof. Gerhard Rempe hat schon die nächsten Erweiterungen des Systems im Visier. „Wir können uns vorstellen, nicht nur zwei, sondern mehrere Atome in den Resonator einzubringen. Unser Gattermechanismus könnte dann auf vielen Atomen gleichzeitig ausgeführt werden.“ In einem größeren Quantennetzwerk könnten Multiqubit-Knoten als kleine Quantencomputer Rechnungen ausführen, deren Ergebnisse auf Photonen übertragen und an andere Knoten im Netzwerk verschickt werden. Olivia Meyer-Streng

Bildbeschreibung:
Anschauliche Darstellung des experimentellen Aufbaus: Auf einen optischen Resonator, in dem zwei Atome (rote Kügelchen) gefangen sind, treffen von rechts einzelne Photonen (hellrot). Infolge der starken Kopplung der Atome an das Lichtfeld des Resonators vermittelt das Photon eine starke Wechselwirkung zwischen den Atomen, mit deren Hilfe sich Gatter-Operationen realisieren lassen. Im Anschluss an jede Gatter-Operation wird der Zustand der Atome anhand ihrer Fluoreszenz und der Transmission des Resonators bestimmt. (Grafik: MPQ, Abteilung Quantendynamik)

Originalveröffentlichung:
Stephan Welte, Bastian Hacker, Severin Daiss, Stephan Ritter, und Gerhard Rempe
Photon-mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity
Physical Review X 8, 6. Februar 2018, DOI:10.1103/PhysRevX.8.011018

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Stephan Welte
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 398
E-Mail: stephan.welte@mpq.mpg.de

Bastian Hacker
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 246
E-Mail: bastian.hacker@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt
03.07.2020 | Universität Wien

nachricht Physiker blicken mit Pikoskope in das Innere der atomaren Materie
01.07.2020 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics