Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht steuert Zwei-Atom-Rechner

07.02.2018

MPQ-Wissenschaftler realisieren Rechenoperationen mit Quanten-Gattern, die Photonen zwischen zwei in einem Resonator gefangenen Atomen vermitteln.

Manch ein mächtiger Regierungschef mag von der Möglichkeit träumen, unbemerkt von Freund oder Feind mit seinen Kollegen in anderen Kontinenten Kontakt aufzunehmen. Neue Quantentechnologien könnten solche Wünsche eines Tages Wirklichkeit werden lassen.


Anschauliche Darstellung des experimentellen Aufbaus: Auf einen optischen Resonator, in dem zwei Atome (rote Kügelchen) gefangen sind, treffen von rechts einzelne Photonen (hellrot). Infolge der starken Kopplung der Atome an das Lichtfeld des Resonators vermittelt das Photon eine starke Wechselwirkung zwischen den Atomen, mit deren Hilfe sich Gatter-Operationen realisieren lassen. Im Anschluss an jede Gatter-Operation wird der Zustand der Atome anhand ihrer Fluoreszenz und der Transmission des Resonators bestimmt. (Grafik: MPQ, Abteilung Quantendynamik)

Denn weltweit arbeiten Physiker an der Realisierung großräumiger Quantennetzwerke, in denen einzelne Lichtquanten (geheime) Quanteninformationen sicher an weit entfernte Stationen übermitteln. Fundamentale Bausteine solcher Netzwerke sind Elemente wie Quanten-Repeater, die dem Verlust der Information über weite Strecken entgegen wirken, oder Quanten-Logikgatter, die für die Verarbeitung von Quanteninformation unerlässlich sind.

Ein neues Konzept für ein Quanten-Gatter hat jetzt ein Team von Wissenschaftlern um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik in Garching und Leiter der Abteilung Quantendynamik, vorgestellt (Physical Review X 8, 6. Februar 2018).

Dabei entsteht zwischen zwei in einem Resonator gefangenen Atomen durch von außen eintreffende Lichtquanten (Photonen) eine Wechselwirkung, die sich für die Umsetzung charakteristischer Gatterfunktionen wie z.B. eines CNOT-Gatters oder der Erzeugung von Verschränkung nutzen lässt. Dieses Modell ist aus mehreren Gründen sehr attraktiv: die Gatter-Operationen erfolgen innerhalb weniger Mikrosekunden, was von Vorteil für die Quanteninformationsverarbeitung ist; das Prinzip funktioniert auch auf anderen experimentellen Plattformen, und überdies lässt sich das Gatter auch als Baustein in einem Quanten-Repeater einsetzen.

Kernstück des Experiments (siehe Abbildung) ist ein asymmetrischer Hohlraumresonator, im Fachjargon „Cavity“ genannt, der aus einem hochreflektierenden Spiegel (links) und einem Spiegel mit einer gewissen Durchlässigkeit (rechts) gebildet wird. In seinem Zentrum befinden sich zwei elektrisch neutrale Rubidium-Atome. Jedes Atom ist Träger eines Qubits, d.h. einer Quanteninformation, die in die Überlagerung zweier stabiler Grundzustände (sie entsprechen den klassischen Bits „0“ und „1“) kodiert ist.

„Einer der atomaren Grundzustände ist in Resonanz mit dem Lichtfeld der Cavity. Deshalb bilden Atome und Resonator ein stark gekoppeltes System“, betont Stephan Welte, der an dem Experiment im Rahmen seiner Doktorarbeit forscht. „Das ist die Voraussetzung dafür, dass die Atome miteinander sprechen können – im freien Raum wäre das nicht möglich.“

Zur Ausführung der Gatter-Operation lässt man einzelne Photonen auf den teildurchlässigen Spiegel fallen. Was dann passiert, hängt von den Anfangszuständen der Atome ab. „Wenn sich beide Atome in einem nicht-koppelnden Zustand befinden, kann das Photon in die Cavity eindringen und eine optische Stehwelle zwischen den Spiegeln aufbauen“, erklärt Bastian Hacker, ebenfalls Doktorand am Experiment.

„Über dieses Lichtfeld können die Atome miteinander kommunizieren: ist es vorhanden, dann wird die Phase der gespeicherten Qubits um 180 Grad gedreht.“ In allen anderen Fällen, wenn ein oder sogar beide Atome in Resonanz mit den Cavity-Moden sind, wird das Photon abgewiesen, und der Zustand des Gesamtsystems bleibt unverändert.

Mit Hilfe dieser Effekte lassen sich zwischen den beiden Atomen elementare Rechenoperationen (Quanten-Gatter) realisieren. Dies belegen die Garchinger Physiker anhand von zwei charakteristischen Gatterfunktionen. Zum einen zeigen sie, dass ihr Aufbau als typisches C(ontrolled)NOT-Gatter arbeiten kann: dabei bestimmt der Eingangswert des einen (Kontroll)-Qubits, ob das andere (Target)-Qubit seinen Zustand ändert oder nicht. Als Basis für ihre Untersuchungen definieren die Physiker für ihr Zwei-Atom-System vier zueinander orthogonale Zustände, die sie jeweils nach der Gatter-Operation einer Messung unterziehen. Die aus diesen Messergebnissen erstellte Tabelle entspricht der Wahrheitstabelle eines klassischen XOR Gatters.

In einer weiteren Messreihe zeigen die Wissenschaftler, dass sie mit ihrem Aufbau aus zwei anfänglich unabhängigen Atomen einen quantenmechanisch verschränkten Zustand erzeugen können. „Dazu präparieren wir den Anfangszustand der Atome so, dass sich jedes in einer kohärenten Überlagerung aus beiden Grundzuständen befindet“, führt Stephan Welte aus. „Somit sind auch beide Fälle – dass das Photon in die Cavity gelangt und dass es abgewiesen wird – quantenmechanisch überlagert. Infolgedessen entsteht durch unser Gatter eine Verschränkung zwischen den Atomen.“

„Der Mechanismus, den wir hier verwenden, beinhaltet nur einen physikalischen Schritt und ist damit besonders einfach und elegant. Im Gegensatz zu anderen Gattermechanismen spielt der Abstand der beiden Atome – bei uns zwischen zwei und 12 Mikrometer – keine Rolle“, betont Bastian Hacker. „Das Prinzip lässt sich auch ohne weiteres auf experimentelle Plattformen anwenden, in denen andere Atome, Ionen oder z.B. Festkörper-Quantenpunkte Träger der Quanteninformation sind.“ Prof. Gerhard Rempe hat schon die nächsten Erweiterungen des Systems im Visier. „Wir können uns vorstellen, nicht nur zwei, sondern mehrere Atome in den Resonator einzubringen. Unser Gattermechanismus könnte dann auf vielen Atomen gleichzeitig ausgeführt werden.“ In einem größeren Quantennetzwerk könnten Multiqubit-Knoten als kleine Quantencomputer Rechnungen ausführen, deren Ergebnisse auf Photonen übertragen und an andere Knoten im Netzwerk verschickt werden. Olivia Meyer-Streng

Bildbeschreibung:
Anschauliche Darstellung des experimentellen Aufbaus: Auf einen optischen Resonator, in dem zwei Atome (rote Kügelchen) gefangen sind, treffen von rechts einzelne Photonen (hellrot). Infolge der starken Kopplung der Atome an das Lichtfeld des Resonators vermittelt das Photon eine starke Wechselwirkung zwischen den Atomen, mit deren Hilfe sich Gatter-Operationen realisieren lassen. Im Anschluss an jede Gatter-Operation wird der Zustand der Atome anhand ihrer Fluoreszenz und der Transmission des Resonators bestimmt. (Grafik: MPQ, Abteilung Quantendynamik)

Originalveröffentlichung:
Stephan Welte, Bastian Hacker, Severin Daiss, Stephan Ritter, und Gerhard Rempe
Photon-mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity
Physical Review X 8, 6. Februar 2018, DOI:10.1103/PhysRevX.8.011018

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Stephan Welte
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 398
E-Mail: stephan.welte@mpq.mpg.de

Bastian Hacker
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 246
E-Mail: bastian.hacker@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

16.07.2018 | Physik Astronomie

Rostocker Forscher testen neue Generation von Offshore-Windenergie-Anlagen

16.07.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics