Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht- und Schattenseiten eines Sternentstehungsgebietes

31.03.2010
Heute veröffentlicht die ESO eine Aufnahme des wenig bekannten, schwachen Nebels GUM 19, dessen eine Hälfte im Infrarotlicht dunkel ist, während die andere hell leuchtet.

Auf der hellen Seite des Nebels wird heißes Wasserstoffgas von einem blauen Überriesenstern namens V391 Velorum angestrahlt. Inmitten des Bandes von dunklem und aufgehelltem Nebelmaterial - im Bild links von V391 Velorum - entstehen weitere Sterne.


Die H II-Region Gum 19
Bild: ESO

In vielen tausend Jahren, wenn diese jungen Sterne "erwachsen" geworden sind, dürften sie - und der Umstand, dass der Stern V391 sein Dasein bis dahin in einer Supernovaexplosion beendet haben dürfte - das janusköpfige Aussehen von Gum 19 völlig verändern.

Gum 19 befindet sich in einer Entfernung von ungefähr 22.000 Lichtjahren im Sternbild Vela ("Segel des Schiffs"). Der Name des Nebels beruht auf dem ersten bedeutenden Verzeichnis so genannter H II-Regionen (sprich: H-zwei) am Südhimmel, veröffentlicht im Jahre 1955 von dem australischen Astrophysiker Colin S. Gum.5. . "H II" bezeichnet dabei ionisierten Wasserstoff, also Wasserstoffgas, das so stark angeregt wurde, dass die Atome ihre Elektronen verloren haben. Solche Nebelgebiete senden Licht bei ganz bestimmten Wellenlängen aus, die jeweils einer ganz bestimmten Farbe entsprechen.

Auf diese Weise ergibt sich das charakteristische Leuchten solcher kosmischen Wolken. in einiger Hinsicht ähneln H II-Regionen den uns vertrauten Wolken am Himmel: Im Laufe der Zeit verändern sich ihre Formen und Strukturen - allerdings äußerst langsam, so dass sich während vieler menschlicher Generationen keinerlei Änderungen feststellen lassen. Zur Zeit erinnert das Aussehen von Gum 19 an einen "Riss in der Raumzeit" nach Art von Science-Fiction-Filmen: Ein schmaler und fast gerader heller Bereich zieht sich durch den gesamten Nebel. Alternativ erinnert der Nebel an einen einen Pfeil mit einer dunklen Spitze.

Dieses neue Bild von Gum 19 wurde mit dem Infrarotinstrument SOFI am New Technology Telescope (NTT) der ESO aufgenommen, das sich auf dem La Silla-Observatorium in Chile befindet. SOFI steht für Son of ISAAC (wörtlich "Sohn von ISAAC"). Die Kombination aus Infrarotkamera und Spektrograf ist nach dem "Vater"-Instrument ISAAC benannt, das am zweiten Observatorium der ESO eingesetzt wird , dem Very Large Telescope auf dem Berg Paranal, der etwa 500 km nördlich von La Silla liegt. Die Beobachtung des Nebels im Infrarotlicht ermöglicht es den Astronomen, zumindest durch einen Teil des Staubes hindurchzusehen, aus dem der Nebel besteht.

Verantwortlich für das Leuchten von Gum 19 ist der extrem heiße Stern V391 Velorum. Er hat eine enorme Oberflächentemperatur von gut 30.000°C und strahlt am intensivsten im blauen Bereich des sichtbaren Lichtes. V391 Velorum ist ein massereicher und in gewisser Weise auch launenhafter - im Sprachgebrauch der Astronomen: ein veränderlicher - Stern: Seine Helligkeit ist in unregelmäßigen Abständen merklichen Schwankungen unterworfen. Durch wiederholtes Abstoßen seiner Außenhülle fügt der Stern außerdem Material zu Gum 19 hinzu und regt den Nebel zum Leuchten an.

Helle Sterne wie V391 Velorum . explodieren nach einer relativ kurzen Lebensdauer von etwa zehn Millionen Jahren als Supernovae. Solch eine Explosion kann für kurze Zeit heller als eine ganze Galaxie sein; in ihrem Verlauf stößt der Stern große Mengen aufgeheizten Materials in die Umgebung ab. Ein solches Ereignis wird Farbe und Form des umliegenden Nebels vollkommen verändern. Gum 19 dürfte nach dem Todeskampf von V391 Velorum nicht mehr wiederzuerkennen sein.

In der unmittelbaren Nachbarschaft des unbeständigen Überriesen V391 Velorum wachsen neue Sterne heran. In der Tat kennzeichnen H II-Regionen Gebiete, in denen große Mengen Gas und Staub begonnen haben unter ihrer eigenen Schwerkraft zusammenfallen. In einigen Millionen Jahren - in kosmischem Maßstab nur ein Wimpernschlag - werden die Zentren dieser langsam schrumpfenden Verklumpungen schließlich eine genügend hohe Dichte erreicht haben, dass Kernfusionsreaktionen zünden: Ein Stern ist entstanden. Die Energie und die Teilchenströme, die diese neugeborenen Sterne abgeben, werden in der Gaslandschaft von Gum 19 Spuren ganz eigener Art hinterlassen.

Hintergrundinformationen:

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 14 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts, sowie VISTA, das größte Durchmusterungsteleskop der Welt. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO das European Extremely Large Telescope (E-ELT) für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, mit 42 Metern Spiegeldurchmesser ein Großteleskop der Extraklasse.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network
Haus der Astronomie
Tel.: (06221) 528 226
E-Mail: eson@mpia.de
Henri Boffin
ESO ePOD, Garching
Tel.: (089) 3200 6222
Handy: 0174 515 43 24
E-mail: hboffin@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.mpia.de
http://www.eso.org/public/news/eso1014/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics