Licht in Nanostrukturen gefangen

Die Komplexität liegt in der enormen Geschwindigkeit von Licht: Es benötigt nur eine Sekunde, um von der Erde bis zum Mond zu gelangen. In Nanostrukturen, Solarzellen zum Beispiel, hält es sich nur wenige Femtosekunden lang auf – das ist der billardste Teil einer Sekunde.

Einem deutsch-japanischen Forscherteam um Prof. Dr. Christoph Lienau, Physiker an der Universität Oldenburg, ist es nun gelungen, das Einfangen – Physiker sprechen von Lokalisierung – von Licht in künstlichen Nanostrukturen in Echtzeit zu verfolgen.

In der Mai-Ausgabe der renommierten Fachzeitschrift Nature Photonics zeigen die Oldenburger Physiker in enger Zusammenarbeit mit Wissenschaftlern der Universitäten Tokyo und Ilmenau erstmals, wie lange sich Licht in einer zufälligen Anordnung von winzig kleinen Nadeln aus Zinkoxid speichern lässt .
„Man kann sich diese Nadeln wie einen Irrgarten für Licht vorstellen: Wenn Lichtstrahlen erstmal hineingelangt sind, haben sie Mühe wieder herauszufinden“, erläutert der Oldenburger Physiker Martin Silies, der das Experiment koordiniert hat. Um dem Licht auf die Spur zu kommen, haben die Wissenschaftler ein neues Mikroskop mit extrem hoher Zeitauflösung entwickelt. Der entscheidende Trick bestehe darin, Lichtimpulse in die Zinkoxid-Struktur einzukoppeln, die kürzer sind als seine Speicherzeit, erläutert Silies. „So können wir direkt messen, wie lange die Lokalisierung andauert.“

Die Erkenntnisse sind vielfach anwendbar. „Wir erwarten zum Beispiel, dass Solarzellen verbessert werden können, wenn es gelingt, das in sie einfallende Sonnenlicht länger zu speichern“, erklärt Lienau. „Unsere Experimente zeigen, wie diese Lichtspeicherung im Detail abläuft – und dieses Verständnis wird uns helfen, die Lichtspeicherung noch effizienter zu machen.“

Die neuen Ergebnisse sind erst ein Anfang. Die durch die Deutsche Forschungsgemeinschaft (DFG) und die Japan Science and Technology Agency geförderte Zusammenarbeit der Forschergruppen aus Oldenburg, Ilmenau und Tokyo habe hervorragend funktioniert, sagt Lienau. „Wir werden sie fortsetzen und hoffen, dass unsere Arbeit nicht nur zur Verbesserung von Solarzellen führen wird, sondern auch zur Entwicklung von ganz neuen Nanolasern.“

Media Contact

Dr. Corinna Dahm-Brey idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer