Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leipziger Physiker lösen 80 Jahre altes Problem der Raman-Spektroskopie

29.03.2016

Physiker der Universität Leipzig haben ein 80 Jahre altes Problem der sogenannten Raman-Spektroskopie gelöst. Die Forscher um Prof. Dr. Marius Grundmann stellten eine Theorie auf und erklärten damit die bei der Raman-Streuung auftretenden Intensitäten für beliebig orientierte Kristalle aller Klassen. Ihre Erkenntnisse haben sie kürzlich im Fachjournal "Physical Review Letters" veröffentlicht.

Die Raman-Spektroskopie ist eine berührungsfreie Analysemethode zur Materialcharakterisierung. Sie wird unter anderem zur chemischen und physikalischen Charakterisierung von Halbleitermaterialien, Edel- und Halbedelsteinen, Katalysatoren, Mineralien, Polymeren und vielen anderen Materialien verwendet.

Bei der Raman-Streuung regt auf den Kristall einfallendes Laserlicht mechanische Schwingungen der Atome (Gitterschwingungen) an, verliert dabei an Energie und kommt mit etwas anderer Farbe (Wellenlänge) zurück. Das untersuchte Phänomen tritt bei nicht kubischen Kristallen auf, wie beispielsweise bei Galliumnitrid - dem Material, aus dem moderne, weiße Leuchtdioden hergestellt werden.
"Die mit der Doppelbrechung verbundenen Effekte auf die Raman-Streuung wurden, nach Scheitern erster Ansätze, jahrzehntelang ignoriert, als viel zu schwierig angesehen oder auch völlig falsch interpretiert", sagt Experimentalphysiker Grundmann. Bei der Doppelbrechung breitet sich Licht verschiedener Polarisation im Kristall mit unterschiedlicher Geschwindigkeit aus.

Mit der neuen Leipziger Theorie, welche die durch Doppelbrechung verursachten Effekte berücksichtigt, gelingt es, die im Labor gemessenen Eigenschaften von Galliumnitrid und anderen doppelbrechenden Materialien wie Zinkoxid oder Galliumoxid erstmalig vollständig zu erklären.

"Es wird möglich, die Raman-Streuung an optisch anisotropen Materialien überhaupt zu verstehen. Anwendungen ergeben sich für alle kristallinen Materialien und insbesondere Dünnschichtsysteme, die nicht aus kubischen Materialien aufgebaut sind, also zum Beispiel blaue und weiße Leuchtdioden, UV-Fotodetektoren, UV-Laser, aber auch bestimmte Transistoren, die nicht aus Silizium sind", sagt Grundmann.

Bisherige Erklärungsansätze seien dadurch hinfällig geworden, ergänzt Physiker Dr. Christian Kranert aus Grundmanns Forscherteam. "Unsere Theorie lässt es zu, die Orientierung eines Kristalles zu bestimmen. Sie eröffnet uns einen völlig neuen Zugang für die Untersuchung der Verbindung von elektronischen und strukturellen Eigenschaften", erklärt er.

Die Kristallorientierung ist eine Grundeigenschaft, die für physikalische Experimente von großer Bedeutung ist. "Es ist nun erstmals möglich, diese optisch durch Raman-Spektroskopie zu bestimmen", erläutert Grundmann.

In folgenden Arbeiten werden die Leipziger Physiker ihren neuen Erkenntnisse auf weitere Materialien ausdehnen, die für Leuchtdioden, Fotodetektoren, Solarzellen und Transistoren von Bedeutung sind.

Originaltitel der Veröffentlichung in "Physical Review Letters": "Raman Tensor Formalism for Optically Anisotropic Crystals", DOI: 10.1103/PhysRevLett.116.127401


Weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: +49 341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.127401

Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

nachricht Immer im richtigen Takt: Ultrakurze Lichtblitze unter optischer Kontrolle
15.10.2019 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätsel gelöst: Das Quantenleuchten dünner Schichten

15.10.2019 | Physik Astronomie

Immer im richtigen Takt: Ultrakurze Lichtblitze unter optischer Kontrolle

15.10.2019 | Physik Astronomie

„Tanzmuster“ von Skyrmionen vermessen

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics