Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leipziger Physiker lösen 80 Jahre altes Problem der Raman-Spektroskopie

29.03.2016

Physiker der Universität Leipzig haben ein 80 Jahre altes Problem der sogenannten Raman-Spektroskopie gelöst. Die Forscher um Prof. Dr. Marius Grundmann stellten eine Theorie auf und erklärten damit die bei der Raman-Streuung auftretenden Intensitäten für beliebig orientierte Kristalle aller Klassen. Ihre Erkenntnisse haben sie kürzlich im Fachjournal "Physical Review Letters" veröffentlicht.

Die Raman-Spektroskopie ist eine berührungsfreie Analysemethode zur Materialcharakterisierung. Sie wird unter anderem zur chemischen und physikalischen Charakterisierung von Halbleitermaterialien, Edel- und Halbedelsteinen, Katalysatoren, Mineralien, Polymeren und vielen anderen Materialien verwendet.

Bei der Raman-Streuung regt auf den Kristall einfallendes Laserlicht mechanische Schwingungen der Atome (Gitterschwingungen) an, verliert dabei an Energie und kommt mit etwas anderer Farbe (Wellenlänge) zurück. Das untersuchte Phänomen tritt bei nicht kubischen Kristallen auf, wie beispielsweise bei Galliumnitrid - dem Material, aus dem moderne, weiße Leuchtdioden hergestellt werden.
"Die mit der Doppelbrechung verbundenen Effekte auf die Raman-Streuung wurden, nach Scheitern erster Ansätze, jahrzehntelang ignoriert, als viel zu schwierig angesehen oder auch völlig falsch interpretiert", sagt Experimentalphysiker Grundmann. Bei der Doppelbrechung breitet sich Licht verschiedener Polarisation im Kristall mit unterschiedlicher Geschwindigkeit aus.

Mit der neuen Leipziger Theorie, welche die durch Doppelbrechung verursachten Effekte berücksichtigt, gelingt es, die im Labor gemessenen Eigenschaften von Galliumnitrid und anderen doppelbrechenden Materialien wie Zinkoxid oder Galliumoxid erstmalig vollständig zu erklären.

"Es wird möglich, die Raman-Streuung an optisch anisotropen Materialien überhaupt zu verstehen. Anwendungen ergeben sich für alle kristallinen Materialien und insbesondere Dünnschichtsysteme, die nicht aus kubischen Materialien aufgebaut sind, also zum Beispiel blaue und weiße Leuchtdioden, UV-Fotodetektoren, UV-Laser, aber auch bestimmte Transistoren, die nicht aus Silizium sind", sagt Grundmann.

Bisherige Erklärungsansätze seien dadurch hinfällig geworden, ergänzt Physiker Dr. Christian Kranert aus Grundmanns Forscherteam. "Unsere Theorie lässt es zu, die Orientierung eines Kristalles zu bestimmen. Sie eröffnet uns einen völlig neuen Zugang für die Untersuchung der Verbindung von elektronischen und strukturellen Eigenschaften", erklärt er.

Die Kristallorientierung ist eine Grundeigenschaft, die für physikalische Experimente von großer Bedeutung ist. "Es ist nun erstmals möglich, diese optisch durch Raman-Spektroskopie zu bestimmen", erläutert Grundmann.

In folgenden Arbeiten werden die Leipziger Physiker ihren neuen Erkenntnisse auf weitere Materialien ausdehnen, die für Leuchtdioden, Fotodetektoren, Solarzellen und Transistoren von Bedeutung sind.

Originaltitel der Veröffentlichung in "Physical Review Letters": "Raman Tensor Formalism for Optically Anisotropic Crystals", DOI: 10.1103/PhysRevLett.116.127401


Weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: +49 341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.127401

Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Durchgeschleust: Schaltanlagen für die Schifffahrt aus einer Hand

19.12.2018 | Unternehmensmeldung

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics