LEGO® mit atomaren Magneten

Die Abbildung zeigt die auf einer Kupfer-Oberfläche liegenden Eisen-Atome (Kegel), die zu verschiedenen Ketten- und Kagomé-förmigen Magneten zusammengebaut wurden. Als Werkzeug wurde dafür die atomar scharfe Spitze eines Rastertunnelmikroskops verwendet. Gleichzeitig wird mit dem Rastertunnelmikroskop die magnetische Ausrichtung der Eisenatome ausgelesen; gelbe Färbung der Eisen-Atome entspricht einer Ausrichtung nach oben, blaue Färbung einer Ausrichtung nach unten.<br><br>© A. A. Khajetoorians, Universität Hamburg<br>

Ähnlich wie bei einem LEGO®-Bausatz, allerdings mit viel kleineren Bausteinen, können die Wissenschaftler einzelne Eisen-Atome zu unterschiedlichsten Strukturen zusammensetzen. Jeder dieser Bausteine ist auch ein kleiner Kompass, der in zwei unterschiedliche Richtungen zeigen kann. Die so konstruierte magnetische Nanostruktur kann von den Wissenschaftlern erforscht werden, um ein besseres Verständnis der physikalischen Grundlagen des Magnetismus zu erhalten.

Das von Dr. Alexander Khajetoorians, Dr. Jens Wiebe und Prof. Roland Wiesendanger verwendete Werkzeug ist ein sogenanntes spin-polarisiertes Rastertunnelmikroskop. Mit diesem Gerät kann eine atomar scharfe Nadel mit sehr hoher Präzision über den Eisen-Atomen, die auf einer Kupfer-Oberfläche liegen, positioniert werden. Wird die Nadel in größerem Abstand über die Eisen-Atome gefahren, so werden die Eisen-Atome gewissermaßen von der Nadel „gespürt“; die Wissenschaftler können dadurch die Atome „sehen“. Wird die Nadel dagegen sehr nahe an eines der Eisen-Atome herangeführt, und dann bewegt, folgt dieses Atom der Nadel, und kann durch entsprechende Bewegung der Nadel auf der Kupfer-Oberfläche an einen beliebigen Ort verschoben werden. Auf diese Art und Weise können beliebige Strukturen Atom für Atom aufgebaut werden, genau wie bei einem LEGO®-Bausatz.

Das Neuartige an dem, in der vorliegenden Arbeit, verwendeten Rastertunnelmikroskop ist eine magnetische Funktionalisierung der Nadel. Damit kann von den Wissenschaftlern nicht nur die Position der Eisen-Atome, sondern auch noch die Ausrichtung ihrer Magnetisierung ermittelt werden. Die Eisen-Atome verhalten sich nämlich wie winzige Kompassnadeln, die entweder nach oben oder nach unten ausgerichtet sind. Wie die Wissenschaftler durch ihre Untersuchungen herausgefunden haben, hängt die Ausrichtung eines jeden der Eisen-Atome im Magneten dabei von der Anzahl seiner Nachbarn und ihrer jeweiligen Entfernung ab. Über dieses Verfahren können neuartige Magnete, wie z. B. in Form von Ketten, oder in Form eines sogenannten Kagomé-Gitters hergestellt werden (siehe Abb.).

In Kollaboration mit Wissenschaftlern des Forschungszentrums Jülich wurden die Eigenschaften der untersuchten Magnete mit aufwendigen Rechnungen, die auf dem Supercomputer in Jülich durchgeführt wurden, verglichen. Dabei ergaben sich interessante Abweichungen von dem erwarteten Verhalten. Mit der weiteren Erforschung der Eigenschaften der neuartigen maßgeschneiderten Magneten erhoffen sich die Wissenschaftler daher in Zukunft ein besseres Verständnis der physikalischen Grundlagen des Magnetismus auf atomarer Skala.

Diese neuen Erkenntnisse könnten die Basis für die Entwicklung beispielsweise neuer Permanentmagnete oder magnetischer Sensoren liefern, welche ohne die knappen und teuren Seltenerdmetalle auskommen.

Originale Veröffentlichung:
“Atom-by-atom engineering and magnetometry of tailored nanomagnets”, A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel and R. Wiesendanger, Nature Physics (2012), DOI:10.1038/NPHYS2299
Weitere Informationen:
Dr. Alexander Ako Khajetoorians
Institut für Angewandte Physik Physik
Universität Hamburg
Jungiusstr. 9a
20355 Hamburg

Tel.: (0 40) 4 28 38 – 33 01
Fax: (0 40) 4 28 38 – 24 09
E-Mail: akhajeto@physnet.uni-hamburg.de

Media Contact

Heiko Fuchs idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer